logo

Lagrange's Formula Derivation 📂Numerical Analysis

Lagrange's Formula Derivation

Formula 1

Given different x0,,xnx_{0} , \cdots , x_{n} data (x0,y0),,(xn,yn)(x_{0}, y_{0}) , \cdots , (x_{n} , y_{n}), let’s say li(x):=ij(xxjxixj)\displaystyle l_{i} (x) := \prod_{i \ne j} \left( {{ x - x_{j} } \over { x_{i} - x_{j} }} \right), then pn(x)=i=0nyili(X) p_{n} (x) = \sum_{i=0}^{n} y_{i} l_{i} (X)

Description

Lagrange’s formula is the simplest method among those to find polynomial interpolation.

Derivation

Strategy: Prove that lil_{i} is the Kronecker delta function with respect to the index.


li(xi)=ij(xixjxixj)=1 l_{i} (x_{i}) = \prod_{i \ne j} \left( {{ x_{i} - x_{j} } \over { x_{i} - x_{j} }} \right) = 1

li(xj)=ij(xjxjxixj)=0 l_{i} (x_{j}) = \prod_{i \ne j} \left( {{ x_{j} - x_{j} } \over { x_{i} - x_{j} }} \right) = 0 Summarizing, it is li(xj)=δijl_{i}(x_{j}) = \delta_{ij}. pn(x)=y0l0(x)+y1l1(x)+ynln(X) p_{n}(x) = y_{0} l_{0}(x) + y_{1} l_{1}(x) + \cdots y_{n} l_{n}(X) If we set this, for all i=0,1,,ni=0,1, \cdots , n, pn(xi)=0++yi1++0=yi p_{n}(x_{i}) =0 + \cdots + y_{i} \cdot 1 + \cdots + 0 = y_{i} holds.


  1. Atkinson. (1989). An Introduction to Numerical Analysis(2nd Edition): p134. ↩︎