logo

Fourier Coefficients of Odd Functions 📂Fourier Analysis

Fourier Coefficients of Odd Functions

Theorem

If a function ff with a period of 2L2L is antisymmetric, then the Fourier coefficients of ff are as follows.

a0=0an={2L0Lf(t)cosnπtLdt(n=1,3,)0(n=0,2,)bn={2L0Lf(t)sinnπtLdt(n=1,3,)0(n=0,2,)cn={1L0Lf(t)einπtLdt(n=±1,±3,)0(n=±2,±4,)  \begin{align*} a_{0} &= 0 \\ a_{n} &= \begin{cases} \dfrac{2}{L} {\displaystyle \int_{0}^{L}} f(t) \cos \frac{n \pi t}{L} dt & (n=1, 3, \cdots ) \\ 0 & (n=0, 2, \cdots )\end{cases} \\ b_{n} &= \begin{cases} \dfrac{2}{L} {\displaystyle \int_{0}^{L}} f(t) \sin \frac{n \pi t}{L} dt & (n=1, 3, \cdots ) \\ 0 & (n=0, 2, \cdots )\end{cases} \\ c_{n} &= \begin{cases} \dfrac{1}{L} {\displaystyle \int_{0}^{L} } f(t)e^{-i\frac{n \pi t}{L} } dt & (n=\pm 1, \pm 3, \cdots) \\ 0 &( n=\pm 2, \pm 4, \cdots )\ \end{cases} \end{align*}

cnc_{n} is the complex Fourier coefficient.

Proof

a0=1LLLf(t)dt=1L0Lf(t)dt+1LL0f(t)dt=1L0Lf(t)dt1LL0f(t+L)dt(f(t)=f(t+L))=1L0Lf(t)dt1L0Lf(t)dt(change of variable t+L=t)=0 \begin{align*} a_{0} &= \dfrac{1}{L} {\displaystyle \int_{-L}^{L} } f(t) dt \\ &= \dfrac{1}{L} {\displaystyle \int_{0}^{L} } f(t) dt + \dfrac{1}{L} {\displaystyle \int_{-L}^{0} } f(t) dt \\ &= \dfrac{1}{L} {\displaystyle \int_{0}^{L} } f(t) dt - \dfrac{1}{L} {\displaystyle \int_{-L}^{0} } f(t+L) dt \Big( \because f(t)=-f(t+L) \Big) \\ &= \dfrac{1}{L} {\displaystyle \int_{0}^{L} } f(t) dt - \dfrac{1}{L} {\displaystyle \int_{0}^{L} } f(t) dt \quad (\text{change of variable }t+L = t) \\ &= 0 \end{align*}

an=1LLLf(t)cosnπtLdt=1L0Lf(t)cosnπtLdt+1LL0f(t)cosnπtLdt=1L0Lf(t)cosnπtLdt1LL0f(t+L)cosnπtLdt(f(t)=f(t+L))=1L0Lf(t)cosnπtLdt1L0Lf(t)cosnπ(tL)Ldt(change of variable t+L=t)=1L0Lf(t)cosnπtLdt1L0Lf(t)(cosnπtLcos(nπ)+sinnπtLsinnπ)dt=1L0Lf(t)cosnπtLdt(1)n1L0Lf(t)cosnπtLdt={2L0Lf(t)cosnπtLdt(n=1,3,)0(n=0,2,) \begin{align*} a_{n} &= \dfrac{1}{L}\int_{-L}^{L} f(t) \cos \frac{n \pi t}{L} dt \\ &= {\displaystyle \dfrac{1}{L}\int_{0}^{L} }f(t) \cos \frac{n \pi t}{L} dt + \dfrac{1}{L}{\displaystyle \int_{-L}^{0}} f(t) \cos \frac{n \pi t}{L} dt \\ &= \dfrac{1}{L} {\displaystyle \int_{0}^{L}} f(t) \cos \frac{n \pi t}{L} dt - \dfrac{1}{L}{\displaystyle \int_{-L}^{0}} f(t+L) \cos \frac{n \pi t}{L} dt \quad \Big( \because f(t)=-f(t+L) \Big) \\ &= \dfrac{1}{L} {\displaystyle \int_{0}^{L}} f(t) \cos \frac{n \pi t}{L} dt - \dfrac{1}{L}{\displaystyle \int_{0}^{L}} f(t) \cos \frac{n \pi (t-L)}{L} dt \quad (\text{change of variable }t+L = t) \\ &= \dfrac{1}{L} {\displaystyle \int_{0}^{L}} f(t) \cos \frac{n \pi t}{L} dt - \dfrac{1}{L}{\displaystyle \int_{0}^{L}} f(t) \left( \cos\frac{n \pi t}{L}\cos (n \pi)+\sin\frac{n \pi t}{L}\sin n\pi \right) dt \\ &= \dfrac{1}{L} {\displaystyle \int_{0}^{L}} f(t) \cos \frac{n \pi t}{L} dt - (-1)^n\dfrac{1}{L}{\displaystyle \int_{0}^{L}} f(t) \cos\frac{n \pi t}{L} dt \\ &= \begin{cases} \dfrac{2}{L} {\displaystyle \int_{0}^{L}} f(t) \cos \frac{n \pi t}{L} dt & (n=1, 3, \cdots ) \\ 0 & (n=0, 2, \cdots )\end{cases} \end{align*}

bn=1LLLf(t)sinnπtLdt=1L0Lf(t)sinnπtLdt+1LL0f(t)sinnπtLdt=1L0Lf(t)sinnπtLdt1LL0f(t+L)sinnπtLdt(f(t)=f(t+L))=1L0Lf(t)sinnπtLdt1L0Lf(t)sinnπ(tL)Ldt(change of variable t+L=t)=1L0Lf(t)sinnπtLdt1L0Lf(t)(sinnπtLcos(nπ)+cosnπtLsinnπ)dt=1L0Lf(t)sinnπtLdt(1)n1L0Lf(t)sinnπtLdt={2L0Lf(t)sinnπtLdt(n=1,3,)0(n=0,2,) \begin{align*} b_{n} &= \dfrac{1}{L}\int_{-L}^{L} f(t) \sin \frac{n \pi t}{L} dt \\ &= {\displaystyle \dfrac{1}{L}\int_{0}^{L} }f(t) \sin \frac{n \pi t}{L} dt + \dfrac{1}{L}{\displaystyle \int_{-L}^{0}} f(t) \sin \frac{n \pi t}{L} dt \\ &= \dfrac{1}{L} {\displaystyle \int_{0}^{L}} f(t) \sin \frac{n \pi t}{L} dt - \dfrac{1}{L}{\displaystyle \int_{-L}^{0}} f(t+L) \sin \frac{n \pi t}{L} dt \quad \Big( \because f(t)=-f(t+L) \Big) \\ &= \dfrac{1}{L} {\displaystyle \int_{0}^{L}} f(t) \sin \frac{n \pi t}{L} dt - \dfrac{1}{L}{\displaystyle \int_{0}^{L}} f(t) \sin \frac{n \pi (t-L)}{L} dt \quad (\text{change of variable }t+L = t) \\ &= \dfrac{1}{L} {\displaystyle \int_{0}^{L}} f(t) \sin \frac{n \pi t}{L} dt - \dfrac{1}{L}{\displaystyle \int_{0}^{L}} f(t) \left( \sin\frac{n \pi t}{L}\cos (n \pi)+\cos\frac{n \pi t}{L}\sin n\pi \right) dt \\ &= \dfrac{1}{L} {\displaystyle \int_{0}^{L}} f(t) \sin \frac{n \pi t}{L} dt - (-1)^n\dfrac{1}{L}{\displaystyle \int_{0}^{L}} f(t) \sin\frac{n \pi t}{L} dt \\ &= \begin{cases} \dfrac{2}{L} {\displaystyle \int_{0}^{L}} f(t) \sin \frac{n \pi t}{L} dt & (n=1, 3, \cdots ) \\ 0 & (n=0, 2, \cdots )\end{cases} \end{align*}

cn=12(anibn)=122L0Lf(t)(cosnπtLisinnπtL)dt=1L0Lf(t)einπtLdt \begin{align*} c_{n} &= \dfrac{1}{2}(a_{n}-ib_{n}) \\ &= \dfrac{1}{2}\dfrac{2}{L}{\displaystyle \int_{0}^{L} }f(t) \left( \cos\frac{n \pi t}{L} -i\sin \frac{n \pi t}{L} \right)dt \\ &= \dfrac{1}{L}{\displaystyle \int_{0}^{L} }f(t) e^{-i\frac{n \pi t }{L}} dt \end{align*}

Due to the conditions of ana_{n} and bnb_{n},

cn={1L0Lf(t)einπtLdt(n=±1,±3,)0(n=±2,±4,)  c_{n} = \begin{cases} \dfrac{1}{L} {\displaystyle \int_{0}^{L} } f(t)e^{-i\frac{n \pi t}{L} } dt & (n=\pm 1, \pm 3, \cdots) \\ 0 &( n=\pm 2, \pm 4, \cdots )\ \end{cases}