logo

Vector Analysis

In multivariable vector analysis, we discuss the differentiation and integration of the following functions:

  • Vector-valued functions $\mathbf{f} : \mathbb{R} \to \mathbb{R}^{n}$
  • Multivariable functions $f : \mathbb{R}^{n} \to \mathbb{R}$
  • Multivariable vector functions $\mathbf{f} : \mathbb{R}^{n} \to \mathbb{R}^{m}$

Real functions $f : \mathbb{R} \to \mathbb{R}$ are covered in the Introduction to Analysis category.

Especially, 3D functions $f : \mathbb{R}^{3} \to \mathbb{R}$ and $\mathbf{f} : \mathbb{R}^{3} \to \mathbb{R}^{3}$ are discussed in the Mathematical Physics category, slightly less rigorously to suit the level of physics and engineering majors.

Euclidean Space

Vector-valued Functions

Covers content related to vector-valued functions $\mathbf{f} : \mathbb{R} \to \mathbb{R}^{n}$.

Differentiation

Integration

Multivariable Functions

Covers content related to multivariable functions $f : \mathbb{R}^{n} \to \mathbb{R}$.

Differentiation

Integration

Multivariable Vector Functions

Covers content related to $\mathbf{f} : \mathbb{R}^{n} \to \mathbb{R}^{m}$.

Differentiation

Integration

References

  • Walter Rudin, Principles of Mathmatical Analysis (3rd Edition, 1976)
  • William R. Wade, An Introduction to Analysis (4th Edition, 2010)
  • James Stewart, Daniel Clegg, and Saleem Watson, Calculus (early transcendentals, 9E)

All posts