logo

Fourier Series Integration 📂Fourier Analysis

Fourier Series Integration

Theorem

Let’s say a periodic function ff with a period 2L2L is piecewise continuous in the interval [L, L)[-L,\ L). Then, the definite integral of ff can be expressed as follows.

t1t2f(t)dt=c0(t2t1)+n0Linπcn(einπt2Leinπt1L) \int_{t_{1}}^{t_{2}} f(t) dt= c_{0}(t_{2}-t_{1}) +\sum \limits_{n \ne 0} \dfrac{L}{in\pi}c_{n}\left( e^{i\frac{n\pi t_{2}}{L}}-e^{i\frac{n\pi t_{1}}{L}} \right)

Here, c0, cnc_{0},\ c_{n} is the complex Fourier coefficient.


Thus, the definite integral of f(t)f(t) is the same as summing the definite integrals of each term of the Fourier series of f(t)f(t). It is important to note that the series on the right side is not the Fourier series of the left side.

Proof

Let’s define a function FF as follows.

F(t):=0tf(s)dsc0t F(t):= \int_{0}^t f(s)ds-c_{0}t

Then, it can be shown that FF is a periodic function with a period 2L2L.

F(t+2L)=0t+2Lf(s)dsc0(t+2L)=0tf(s)ds+t2Lf(s)dsc0t2Lc0=0tf(s)dsc0t=F(t) \begin{align*} F(t+2L) &= \int_{0}^{t+2L} f(s)ds - c_{0}(t+2L) \\ &= \int_{0}^t f(s)ds+\int_{t}^{2L}f(s)ds - c_{0}t -2Lc_{0} \\ &= \int_{0} ^t f(s)ds-c_{0}t=F(t) \end{align*}

Since ff is piecewise continuous, FF is continuous. Therefore, FF satisfies the Dirichlet conditions and can be expanded into a Fourier series.

F(t)=C0+n0CneinπLt F(t)=C_{0}+\sum \limits_{n \ne 0} C_{n}e^{i\frac{n\pi}{L}t}

The reason for separating the constant term will be known later. When calculating the coefficients,

Cn=12LLLF(t)einπLtdt=Linπ12L[F(t)einπLt]LL+Linπ12LLLF(t)einπLtdt=Linπ12LLL(f(t)c0)einπLtdt=Linπ12LLLf(t)einπLtdtLinπc02LLLeinπLtdt=Linπ12LLLf(t)einπLtdt=Linπcn \begin{align*} C_{n}&=\dfrac{1}{2L}\int_{-L}^{L} F(t)e^{-i\frac{n\pi}{L}t} dt \\ &= \dfrac{-L}{in\pi} \dfrac{1}{2L} \left[ F(t)e^{i\frac{n\pi}{L}t} \right]_{-L}^{L} +\dfrac{L}{in\pi}\dfrac{1}{2L} \int_{-L}^{L} F^{\prime}(t)e^{-i\frac{n\pi }{L}t}dt \\ &= \dfrac{L}{in\pi}\dfrac{1}{2L} \int_{-L}^{L} \left( f(t)-c_{0} \right) e^{-i\frac{n\pi}{L}t}dt \\ &= \dfrac{L}{in\pi}\dfrac{1}{2L} \int_{-L}^{L} f(t)e^{-i\frac{n\pi}{L}t}dt -\dfrac{L}{in\pi}\dfrac{c_{0}}{2L} \int_{-L}^{L} e^{-i\frac{n\pi}{L}t} dt \\ &= \dfrac{L}{in\pi}\dfrac{1}{2L} \int_{-L}^{L} f(t)e^{-i\frac{n\pi}{L}t}dt \\ &= \dfrac{L}{in\pi}c_{n} \end{align*}

Therefore,

F(t)=C0+n0LinπcneinπLt F(t)=C_{0} +\sum \limits_{n \ne 0} \dfrac{L}{in\pi}c_{n} e^{i\frac{n\pi}{L}t}

Using the definition of F(t)F(t) to calculate the definite integral of f(t)f(t) gives

t1t2f(t)dt=0t2f(t)dt0t1f(t)dt=F(t2)F(t1)+c0(t2t1)=(C0+n0LinπcneinπLt2)(C0+n0LinπcneinπLt1)+c0(t2t1)=c0(t2t1)+n0Linπcn(einπLt2einπLt1) \begin{align*} \int_{t_{1}}^{t_{2}} f(t) dt &= \int_{0}^{t_{2}} f(t) dt -\int_{0}^{t_{1}} f(t)dt \\ &= F(t_{2})- F(t_{1}) + c_{0}(t_{2}-t_{1}) \\ &= \left( C_{0}+\sum \limits_{n \ne 0} \dfrac{L}{in\pi}c_{n} e^{i\frac{n\pi}{L}t_{2}} \right) -\left( C_{0}+\sum \limits_{n \ne 0} \dfrac{L}{in\pi}c_{n} e^{i\frac{n\pi}{L}t_{1}} \right) +c_{0}(t_{2}-t_{1}) \\ &= c_{0}(t_{2}-t_{1}) + \sum \limits_{n \ne 0} \dfrac{L}{in\pi}c_{n} \left( e^{i\frac{n\pi}{L}t_{2}}-e^{i\frac{n\pi}{L}t_{1}} \right) \end{align*}

As mentioned at the beginning of the document, note that the series on the right is not the Fourier series of t1t2f(t)dt\int_{t_{1}}^{t_{2}}f(t)dt. The Fourier series of t1t2f(t)dtc0(t2t1)\displaystyle \int_{t_{1}}^{t_{2}} f(t) dt -c_{0}(t_{2}-t_{1}) is n0Linπcn(einπLt2einπLt1)\sum \limits_{n \ne 0} \dfrac{L}{in\pi}c_{n} \left( e^{i\frac{n\pi}{L}t_{2}}-e^{i\frac{n\pi}{L}t_{1}} \right).