Mean and Variance of the Beta Distribution
📂Probability DistributionMean and Variance of the Beta Distribution
X∼Beta(α,β) Surface
E(X)=α+βαVar(X)=(α+β+1)(α+β)2αβ
Derivation
Strategy: Direct deduction using the definition of the beta distribution and the basic properties of the gamma function.
Definition of the Beta Distribution: α,β>0 A continuous probability distribution Beta(α,β) with the following probability density function is called the Beta distribution.
f(x)=Γ(α)Γ(β)Γ(α+β)xα−1(1−x)β−1,x∈[0,1]
Recursive formula of the Gamma function:
Γ(p+1)=pΓ(p)
Mean
E(X)===∫01xΓ(α)Γ(β)Γ(α+β)xα−1(1−x)β−1dx∫01α+βαΓ(α+1)Γ(β)Γ(α+β+1)xα(1−x)β−1α+βα
■
Variance
E(X2)===∫01x2Γ(α)Γ(β)Γ(α+β)xα−1(1−x)β−1dx∫01(α+β)(α+β+1)α(α+1)Γ(α+2)Γ(β)Γ(α+β+2)xα+1(1−x)β−1(α+β)(α+β+1)α(α+1)
Therefore,
Var(X)===(α+β)(α+β+1)α(α+1)−(α+β)(α+β)ααα+βα(α+β)(α+β+1)(α+1)(α+β)−α(α+β+1)(α+β+1)(α+β)2αβ
■