logo

Fourier Series in Complex Notation 📂Fourier Analysis

Fourier Series in Complex Notation

Formulas

The complex Fourier series of a function ff defined over the interval [L, L)[-L,\ L) is given by:

f(t)=n=cneinπtL f(t) = \sum \limits_{n=-\infty}^{\infty} c_{n} e^{i\frac{n\pi t}{L}}

Here, the complex Fourier coefficients are as follows:

cn=12LLLf(t)einπtLdt c_{n} = \dfrac{1}{2L}\int_{-L}^{L}f(t)e^{-i\frac{n \pi t}{L} }dt

The Fourier coefficients satisfy the following equation:

a0=2c0an=cn+cnbn=i(cncn)cn=12(anibn)cn=12(an+ibn) \begin{align*} a_{0} & = 2 c_{0} \\ a_{n} &= c_{n}+c_{-n} \\ b_{n} &= i(c_{n}-c_{-n}) \\ c_{n} &= \frac{1}{2} (a_{n}-ib_{n}) \\ c_{-n} &= \frac{1}{2} (a_{n}+ib_{n}) \end{align*}


It’s a form that is used more frequently than the trigonometric form because it is simpler.

Proof

Fourier series

f(t)=a02+n=1(ancosnπtL+bnsinnπtL) \begin{equation} f(t) = \dfrac{a_{0}}{2}+\sum \limits_{n=1}^{\infty} \left( a_{n} \cos \dfrac{n\pi t}{L} + b_{n}\sin\dfrac{n\pi t }{L} \right) \end{equation}

wherea0= 1LLLf(t)dtan= 1LLLf(t)cosnπtLdtbn= 1LLLf(t)sinnπtLdt \begin{align*} \text{where}\quad a_{0} =&\ \dfrac{1}{L}\int_{-L}^{L}f(t)dt \\ a_{n} =&\ \dfrac{1}{L}\int_{-L}^{L} f(t)\cos\dfrac{n\pi t}{L} dt \\ b_{n} =&\ \dfrac{1}{L}\int_{-L}^{L}f(t)\sin\dfrac{n\pi t}{L}dt \\ \end{align*}

Using the Euler’s formula, the cosine and sine functions can be expressed as complex exponential functions as follows:

cosnπtL=einπtL+einπtL2sinnπtL=einπtLeinπtL2i \begin{align*} \cos \dfrac{n\pi t}{L} &= \dfrac{e^{i\frac{n\pi t}{L}} + e^{-i\frac{n\pi t}{L}} }{2} \\ \sin \dfrac{n \pi t}{L} &= \dfrac{e^{i\frac{n\pi t}{L}} - e^{-i\frac{n\pi t}{L}} }{2i} \end{align*}

Substituting this into (1)(1) yields:

f(t)=a02+n=1(aneinπtL+einπtL2+bneinπtLeinπtL2i) f(t)=\dfrac{a_{0}}{2}+\sum \limits_{n=1}^{\infty} \left( a_{n} \dfrac{e^{i\frac{n\pi t}{L}} + e^{-i\frac{n\pi t}{L}} }{2} + b_{n}\dfrac{e^{i\frac{n\pi t}{L}} - e^{-i\frac{n\pi t}{L}} } {2i} \right)

Grouping terms based on the exponential function gives:

f(t)=a02+n=1(12(anibn)einπtL+12(an+ibn)einπtL) f(t) = \dfrac{a_{0}}{2}+\sum \limits_{n=1}^{\infty} \left( \dfrac{1}{2}\left(a_{n}-ib_{n} \right)e^{i\frac{n\pi t}{L}} +\dfrac{1}{2}\left(a_{n} + ib_{n} \right) e^{-i\frac{n\pi t}{L} } \right)

If we denote c0=a02c_{0}=\dfrac{a_{0}}{2}, cn=12(anibn)c_{n}=\dfrac{1}{2}\left(a_{n}-ib_{n} \right), and cn=12(an+ibn)c_{-n}=\dfrac{1}{2}\left(a_{n} + ib_{n} \right) as follows:

f(t)=c0+n=1(cneinπtL+cneinπtL) f(t) =c_{0}+\sum \limits_{n=1}^{\infty} \left( c_{n}e^{i\frac{n\pi t}{L}} +c_{-n} e^{-i\frac{n\pi t}{L} } \right)

And organize the indices into a single one:

f(t)=n=cneinπtL f(t) = \sum \limits_{n=-\infty}^{\infty} c_{n} e^{i\frac{n \pi t}{L} }

Also, if we compute c0c_{0}, cnc_{n}, and cnc_{-n}:

c0=a02=12LLLf(t)dtcn=12(anibn)=12LLLf(t)einπtLdt(n=1, 2, )cn=12(an+ibn)=12LLLf(t)einπtLdt(n=1, 2, ) \begin{align*} c_{0} &=\dfrac{a_{0}}{2}=\dfrac{1}{2L}\int_{-L}^{L}f(t)dt \\ c_{n}&=\dfrac{1}{2}\left(a_{n}-ib_{n} \right)=\dfrac{1}{2L}\int_{-L}^{L}f(t)e^{-i\frac{n \pi t}{L} }dt \quad (n=1,\ 2,\ \cdots ) \\ c_{-n}&=\dfrac{1}{2}\left(a_{n} + ib_{n} \right)=\dfrac{1}{2L}\int_{-L}^{L}f(t)e^{i\frac{n \pi t}{L} }dt \quad (n=-1,\ -2,\ \cdots) \end{align*}

Then:

cn=12LLLf(t)einπtLdt(n=0, ±1, ±2, ) c_{n} = \dfrac{1}{2L}\int_{-L}^{L}f(t)e^{-i\frac{n \pi t}{L} }dt \quad (n=0,\ \pm 1,\ \pm 2,\ \cdots)