Fourier Series in Complex Notation
📂Fourier AnalysisFourier Series in Complex Notation
The complex Fourier series of a function f defined over the interval [−L, L) is given by:
f(t)=n=−∞∑∞cneiLnπt
Here, the complex Fourier coefficients are as follows:
cn=2L1∫−LLf(t)e−iLnπtdt
The Fourier coefficients satisfy the following equation:
a0anbncnc−n=2c0=cn+c−n=i(cn−c−n)=21(an−ibn)=21(an+ibn)
It’s a form that is used more frequently than the trigonometric form because it is simpler.
Proof
Fourier series
f(t)=2a0+n=1∑∞(ancosLnπt+bnsinLnπt)
wherea0=an=bn= L1∫−LLf(t)dt L1∫−LLf(t)cosLnπtdt L1∫−LLf(t)sinLnπtdt
Using the Euler’s formula, the cosine and sine functions can be expressed as complex exponential functions as follows:
cosLnπtsinLnπt=2eiLnπt+e−iLnπt=2ieiLnπt−e−iLnπt
Substituting this into (1) yields:
f(t)=2a0+n=1∑∞(an2eiLnπt+e−iLnπt+bn2ieiLnπt−e−iLnπt)
Grouping terms based on the exponential function gives:
f(t)=2a0+n=1∑∞(21(an−ibn)eiLnπt+21(an+ibn)e−iLnπt)
If we denote c0=2a0, cn=21(an−ibn), and c−n=21(an+ibn) as follows:
f(t)=c0+n=1∑∞(cneiLnπt+c−ne−iLnπt)
And organize the indices into a single one:
f(t)=n=−∞∑∞cneiLnπt
Also, if we compute c0, cn, and c−n:
c0cnc−n=2a0=2L1∫−LLf(t)dt=21(an−ibn)=2L1∫−LLf(t)e−iLnπtdt(n=1, 2, ⋯)=21(an+ibn)=2L1∫−LLf(t)eiLnπtdt(n=−1, −2, ⋯)
Then:
cn=2L1∫−LLf(t)e−iLnπtdt(n=0, ±1, ±2, ⋯)
■