logo

Chebyshev Differential Equations and Chebyshev Polynomials 📂Odinary Differential Equations

Chebyshev Differential Equations and Chebyshev Polynomials

Definition

The following differential equation is referred to as the Chebyshev Differential Equation.

(1x2)d2ydx2xdydx+n2y=0 \begin{equation} (1-x^2)\dfrac{d^2 y}{dx^2} -x\dfrac{dy}{dx}+n^2 y=0 \label{def1} \end{equation}

The solution to the Chebyshev differential equation is known as Chebyshev polynomials, commonly denoted by Tn(x)T_{n}(x). The general term of Tn(x)T_{n}(x) is as follows:

  • When nn is even

    1λ22!x2+λ2(λ222)4!x4+m=3(1)mλ2(λ222)(λ2(2m2)2)(2m)!x2m 1-\dfrac{\lambda^2}{2!}x^2+\dfrac{\lambda^2(\lambda^2-2^2)}{4!}x^4+\sum \limits_{m=3}^\infty (-1)^m \dfrac{\lambda^2(\lambda^2-2^2)\cdots(\lambda^2-(2m-2)^2)}{(2m)!} x^{2m}

  • When nn is odd

xλ2123!x3+(λ212)(λ232)5!x5+m=3(1)m(λ212)(λ232)(λ2(2m1)2)(2m+1)!x2m+1 x-\dfrac{\lambda^2-1^2}{3!}x^3+\dfrac{(\lambda^2-1^2)(\lambda^2-3^2)}{5!}x^5+\sum \limits_{m=3}^\infty (-1)^m\dfrac{(\lambda^2-1^2)(\lambda^2-3^2) \cdots (\lambda^2-(2m-1)^2)}{(2m+1)!} x^{2m+1}

Especially, the first few polynomials are as follows:

T0(x)=1T1(x)=xT2(x)=2x21T3(x)=4x33x \begin{align*} T_{0}(x) &= 1 \\ T_{1}(x) &= x \\ T_2(x) &= 2x^2-1 \\ T_{3}(x) &= 4x^3-3x \\ \vdots & \end{align*}

Theorem

For Chebyshev polynomials TnT_{n}, the following equation holds:

Tn(cost)=cos(nt) T_{n}(\cos t)= \cos (nt)

Description

Since Tn(x)T_{n}(x) was a nnth degree polynomial with respect to xx, Tn(cost)T_{n}(\cos t) is a polynomial with respect to cost\cos t. Thus, Chebyshev polynomials can also be understood as the expansion of cos(nt)\cos (nt) into a nnth degree polynomial with respect to cost\cos t.

When n=2, 3n=2,\ 3, to see if it fits well

cos2t=cos2t1=T2(cost)    T2(x)=x21 \cos 2t=\cos ^2 t-1=T_2(\cos t)\iff T_2(x)=x^2-1

cos3t=4cos3t3cost=T3(cost)    T3(x)=4x33x \cos 3t=4\cos ^3 t-3\cos t=T_{3}(\cos t) \iff T_{3}(x)=4x^3-3x

Also, since x=costx=\cos t results in arccosx=t\arccos x=t, substituting into the above equation yields

Tn(x)=cos(narccosx)orTn(x)=cos(ncos1x) T_{n}(x)=\cos(n\arccos x) \quad \text{or} \quad T_{n}(x) = \cos (n\cos^{-1}x)

Proof

Strategy: Demonstrate that by substituting x=costx=\cos t, y=cos(nt)y=\cos (nt) becomes a solution to the Chebyshev differential equation.


When it’s given x=costx=\cos t,

dx=sintdt    dtdx=1sint dx=-\sin t dt \quad \implies \quad \dfrac{dt}{dx}=-\dfrac{1}{\sin t}

Therefore, yy^{\prime} is as follows.

dydx=dydtdtdx=1sintdydt \dfrac{dy}{dx}=\dfrac{dy}{dt} \dfrac{dt}{dx}=-\dfrac{1}{\sin t}\dfrac{dy}{dt}

And yy^{\prime \prime} is as follows.

d2ydx2=ddx(dydx)=ddt(dydx)dtdx=ddt(1sintdydt)1sint=1sint(costsin2tdydt+1sintd2ydt2)=1sin2t(costsintdydt+d2ydt2) \begin{align*} \dfrac{d^2 y}{dx^2} &= \dfrac{d}{dx} \left(\dfrac{dy}{dx}\right) \\ &= \dfrac{d}{dt}\left(\dfrac{dy}{dx} \right) \dfrac{dt}{dx} \\ &=\dfrac{d}{dt}\left(\dfrac{1}{\sin t}\dfrac{dy}{dt}\right) \dfrac{1}{\sin t} \\ &= \dfrac{1}{\sin t} \left( \dfrac{-\cos t}{\sin^2 t}\dfrac{dy}{dt}+\dfrac{1}{\sin t}\dfrac{d^2y}{dt^2} \right) \\ &= \dfrac{1}{\sin ^2 t} \left( \dfrac{-\cos t}{\sin t}\dfrac{dy}{dt}+ \dfrac{d^2y}{dt^2} \right) \end{align*}

Substituting the above into (def1)\eqref{def1} results in the following.

(1cos2t)1sin2t(costsintdydt+d2ydt2)cost(1sint)dydt+n2y=0 (1-\cos ^2t)\dfrac{1}{\sin ^2 t} \left( \dfrac{-\cos t}{\sin t}\dfrac{dy}{dt}+ \dfrac{d^2y}{dt^2} \right)-\cos t \left( -\dfrac{1}{\sin t} \right)\dfrac{dy}{dt} +n^2y=0

Sorting it out yields

y+n2y=0 y^{\prime \prime}+n^2y=0

Thus Tn(cost)T_{n}(\cos t) is a solution to the above differential equation. However, the equation is a very simple second-order differential equation, and its general solution is y=C1cos(nt)+C2sin(nt)y=C_{1}\cos (nt) + C_2\sin (nt). Therefore,

Tn(cost)=cos(nt) T_{n}(\cos t)=\cos (nt)

See Also