logo

Mean and Variance of the Negative Binomial Distribution 📂Probability Distribution

Mean and Variance of the Negative Binomial Distribution

Formula

XNB(r,p)X \sim \text{NB}(r, p) Plane E(X)=r(1p)pVar(X)=r(1p)p2 E(X) = {{ r (1-p) } \over { p }} \\ \Var(X) = {{ r (1-p) } \over { p^{2} }}

Proof

Strategy: Use the fact that the negative binomial distribution is a generalization of the geometric distribution.

  • [b] Generalization of Geometric Distribution: If Y=X1++XrY = X_{1} + \cdots + X_{r} and XiiidGeo(p)X_{i} \overset{\text{iid}}{\sim} \text{Geo}(p) then YNB(r,p)Y \sim \text{NB}(r,p)

Here, the definition of the geometric distribution is set so that its support is like S={0,1,2,}\mathcal{S} = \left\{ 0 , 1 , 2, \cdots \right\}.

Mean and Variance of Geometric Distribution: If XGeo(p)X \sim \text{Geo} (p) then E(X)=1ppVar(X)=1pp2 E(X) = {{ 1-p } \over { p }} \\ \Var(X) = {{ 1-p } \over { p^{2} }}

Mean

Since Y=X1+X2++XrY=X_1+X_2+\cdots+X_r E(Y)=E(X1)+E(X2)++E(Xr)=i=1rE(Xi)=r(1p)p \begin{align*} E(Y) =& E(X_1)+E(X_2)+\cdots+E(X_r) \\ =& \sum_{i=1}^{r} E(X_i) \\ =& { {r(1-p)} \over p } \end{align*} and since YNB(r,p)Y \sim \text{NB} (r,p), then E(Y)=r(1p)p\displaystyle E(Y) = { {r(1-p)} \over p }

Variance

Since Y=X1+X2++XrY=X_1+X_2+\cdots+X_r and X1,X2,,XrX_1, X_2, \cdots , X_r are mutually independent, the covariance is 00. Var(Y)=Var(X1)+Var(X2)++Var(Xr)=i=1rVar(Xi)=r(1p)p2 \begin{align*} Var(Y) =& Var(X_1)+Var(X_2)+\cdots+Var(X_r) \\ =& \sum_{i=1}^{r} Var(X_i) \\ =& \frac { r(1-p) }{ { p }^{ 2 } } \end{align*} Since YNB(r,p)Y \sim \text{NB} (r,p), then Var(Y)=r(1p)p2\displaystyle Var(Y) = \frac { r(1-p) }{ { p }^{ 2 } }