The Fourier Series of a Riemann Integrable Function Converges
📂Fourier Analysis The Fourier Series of a Riemann Integrable Function Converges Theorem[^1] Let’s assume that the function f f f is Riemann integrable on the interval [ − L , L ) [-L,\ L) [ − L , L ) . Then, for any point of continuity t t t , the Fourier series lim N → ∞ S N f ( t ) \lim \limits_{N \to \infty }S^{f}_{N}(t) N → ∞ lim S N f ( t ) of f f f converges to f ( t ) f(t) f ( t ) .
lim N → ∞ S N f ( t ) = f ( t )
\lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)=f(t)
N → ∞ lim S N f ( t ) = f ( t )
Where
S N f ( t ) = a 0 2 + ∑ n = 1 N ( a n cos n π t L + b n sin n π t L ) a 0 = 1 L ∫ − L L f ( t ) d t a n = 1 L ∫ − L L f ( t ) cos n π t L d t b n = 1 L ∫ − L L f ( t ) sin n π t L d t
\begin{align*}
S^{f}_{N}(t)&=\dfrac{a_{0}}{2}+\sum \limits_{n=1}^{N} \left( a_{n} \cos \dfrac{n\pi t}{L} + b_{n}\sin\dfrac{n\pi t} {L} \right)
\\ a_{0} &=\dfrac{1}{L}\int_{-L}^{L}f(t)dt
\\ a_{n} &= \dfrac{1}{L}\int_{-L}^{L} f(t)\cos\dfrac{n\pi t}{L} dt
\\ b_{n}&=\dfrac{1}{L}\int_{-L}^{L}f(t)\sin\dfrac{n\pi t}{L}dt
\end{align*}
S N f ( t ) a 0 a n b n = 2 a 0 + n = 1 ∑ N ( a n cos L nπ t + b n sin L nπ t ) = L 1 ∫ − L L f ( t ) d t = L 1 ∫ − L L f ( t ) cos L nπ t d t = L 1 ∫ − L L f ( t ) sin L nπ t d t
Proof Strategy: The proof concludes by showing that ∣ lim N → ∞ S N f ( t ) − f ( t ) ∣ = 0 \left| \lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)-f(t) \right|=0 N → ∞ lim S N f ( t ) − f ( t ) = 0 .
Relationship between Fourier series and the Dirichlet kernel
S N f ( t ) = 1 L ∫ − L L f ( x ) D N ( π ( x − t ) L ) d x
S^{f}_{N}(t)=\dfrac{1}{L}\int_{-L}^{L}f(x)D_{N}\left(\dfrac{\pi (x-t)}{L}\right)dx
S N f ( t ) = L 1 ∫ − L L f ( x ) D N ( L π ( x − t ) ) d x
From the above fact, we obtain the following equation.
lim N → ∞ S N f ( t ) − f ( t ) = lim N → ∞ 1 L ∫ − L L f ( x ) D N ( π ( x − t ) L ) d x − f ( t )
\begin{equation}
\lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)-f(t) =\lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} f(x)D_{N}\left( \dfrac{\pi (x-t)}{L}\right)dx -f(t)
\end{equation}
N → ∞ lim S N f ( t ) − f ( t ) = N → ∞ lim L 1 ∫ − L L f ( x ) D N ( L π ( x − t ) ) d x − f ( t )
Integration of the Dirichlet kernel
1 L ∫ − L L D N ( π ( x − t ) L ) d x = 1
\dfrac{1}{L}\int_{-L}^{L}D_{N}\left( \dfrac{\pi (x-t)}{L} \right)dx=1
L 1 ∫ − L L D N ( L π ( x − t ) ) d x = 1
Multiplying both sides of the above equation by f ( t ) f(t) f ( t ) gives the following equation.
1 L ∫ − L L f ( t ) D N ( π ( x − t ) L ) d x = f ( t )
\dfrac{1}{L}\int_{-L}^{L} f(t) D_{N}\left( \dfrac{\pi (x-t)}{L} \right)dx = f(t)
L 1 ∫ − L L f ( t ) D N ( L π ( x − t ) ) d x = f ( t )
Substituting this into ( 1 ) (1) ( 1 ) and arranging gives the following result.
lim N → ∞ S N f ( t ) − f ( t ) = lim N → ∞ 1 L ∫ − L L f ( x ) D N ( π ( x − t ) L ) d x − f ( t ) = lim N → ∞ 1 L ∫ − L L f ( x ) D N ( π ( x − t ) L ) d x − 1 L ∫ − L L f ( t ) D N ( π ( x − t ) L ) d x = lim N → ∞ 1 L ∫ − L L [ f ( x ) − f ( t ) ] D N ( π ( x − t ) L ) d x
\begin{align*}
&\lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)-f(t) \\
&= \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} f(x)D_{N}\left( \dfrac{\pi (x-t)}{L}\right)dx -f(t) \\
&= \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} f(x)D_{N}\left( \dfrac{\pi (x-t)}{L}\right)dx -\dfrac{1}{L}\int_{-L}^{L} f(t) D_{N}\left( \dfrac{\pi (x-t)}{L}\right)dx \\
&= \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} \Big[ f(x)-f(t) \Big] D_{N}\left( \dfrac{\pi (x-t)}{L}\right)dx
\end{align*}
N → ∞ lim S N f ( t ) − f ( t ) = N → ∞ lim L 1 ∫ − L L f ( x ) D N ( L π ( x − t ) ) d x − f ( t ) = N → ∞ lim L 1 ∫ − L L f ( x ) D N ( L π ( x − t ) ) d x − L 1 ∫ − L L f ( t ) D N ( L π ( x − t ) ) d x = N → ∞ lim L 1 ∫ − L L [ f ( x ) − f ( t ) ] D N ( L π ( x − t ) ) d x
Substituting x − t = λ x-t=\lambda x − t = λ here yields the following result.
lim N → ∞ 1 L ∫ − L − t L − t [ f ( λ + t ) − f ( t ) ] D N ( π λ L ) d λ
\begin{equation}
\lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L-t}^{L-t} \Big[ f(\lambda+t)-f(t) \Big] D_{N}\left( \dfrac{\pi \lambda}{L} \right)d\lambda
\end{equation}
N → ∞ lim L 1 ∫ − L − t L − t [ f ( λ + t ) − f ( t ) ] D N ( L πλ ) d λ
Since f ( x ) f(x) f ( x ) is continuous at t t t , by definition , there exists δ > 0 \delta>0 δ > 0 that satisfies the following for s , t ∈ [ − L , L ) s,t\in [-L,\ L) s , t ∈ [ − L , L ) and ε > 0 \varepsilon >0 ε > 0 .
∃ δ > 0 s.t. ∣ s − t ∣ < δ ⟹ ∣ f ( s ) − f ( t ) ∣ < ε
\begin{equation}
\exists \delta>0\quad \text{s.t. } \left| s-t \right|<\delta \implies \left| f(s)-f(t) \right| <\varepsilon
\end{equation}
∃ δ > 0 s.t. ∣ s − t ∣ < δ ⟹ ∣ f ( s ) − f ( t ) ∣ < ε
The Dirichlet kernel converges to the Dirac delta function
lim n → ∞ D n ( t ) = δ ( t )
\lim \limits_{n \to \infty} D_{n}(t)=\delta (t)
n → ∞ lim D n ( t ) = δ ( t )
And due to the above fact, for a fixed positive number δ > 0 \delta>0 δ > 0 , there exists a natural number n n n such that ∣ x ∣ > δ |x|>\delta ∣ x ∣ > δ and when N > n N \gt n N > n , ∣ D N ( π x L ) ∣ < ε \left| D_{N}\left( \dfrac{\pi x}{L} \right) \right| \lt \varepsilon D N ( L π x ) < ε .
∃ n ∈ N s.t. ∣ x ∣ > δ , N > n ⟹ ∣ D N ( π x L ) ∣ < ε
\begin{equation}
\exists n\in \mathbb{N}\quad \text{s.t. } \left| x \right| > \delta,\ N>n \implies \left| D_{N} \left( \frac{\pi x}{L} \right) \right| < \varepsilon
\end{equation}
∃ n ∈ N s.t. ∣ x ∣ > δ , N > n ⟹ D N ( L π x ) < ε
Moreover, since f ( x ) f(x) f ( x ) is assumed to be Riemann integrable , it is bounded. Therefore, a real number M M M exists that satisfies ∣ f ( t ) ∣ < M |f(t)| < M ∣ f ( t ) ∣ < M .
∃ M s.t. ∣ f ( t ) ∣ < M
\begin{equation}
\exists M\quad \text{s.t. } \left| f(t) \right| <M
\end{equation}
∃ M s.t. ∣ f ( t ) ∣ < M
Now, dividing the range of integration for ( 2 ) (2) ( 2 ) yields the following inequality.
∣ lim N → ∞ S N f ( t ) − f ( t ) ∣ = lim N → ∞ ∣ 1 L ∫ − L − t L − t [ f ( λ + t ) − f ( t ) ] D N ( π λ L ) d λ ∣ ≤ lim N → ∞ 1 L [ ∣ ∫ − δ δ [ f ( λ + t ) − f ( t ) ] D N ( π λ L ) d λ ∣ + ∣ ∫ λ ∉ [ − δ , δ ] [ f ( λ + t ) − f ( t ) ] D N ( π λ L ) d λ ∣ ]
\begin{align*}
&| \lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)-f(t)| \\
&= \lim \limits_{N \rightarrow \infty} \left| \dfrac{1}{L} \int_{-L-t}^{L-t} \left[ f(\lambda+t)-f(t) \right] D_{N}\left( \dfrac{\pi \lambda}{L}\right)d\lambda \right| \\
&\le \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \left[ \left|\int_{-\delta}^{\delta} \left[ f(\lambda+t)-f(t) \right] D_{N}\left( \dfrac{\pi \lambda}{L}\right) d\lambda \right| +\left| \int_{\lambda \notin[-\delta,\delta]} \left[ f(\lambda+t)-f(t) \right] D_{N}\left( \dfrac{\pi \lambda}{L}\right) d\lambda \right| \right]
\end{align*}
∣ N → ∞ lim S N f ( t ) − f ( t ) ∣ = N → ∞ lim L 1 ∫ − L − t L − t [ f ( λ + t ) − f ( t ) ] D N ( L πλ ) d λ ≤ N → ∞ lim L 1 [ ∫ − δ δ [ f ( λ + t ) − f ( t ) ] D N ( L πλ ) d λ + ∫ λ ∈ / [ − δ , δ ] [ f ( λ + t ) − f ( t ) ] D N ( L πλ ) d λ ]
Applying the ( 3 ) (3) ( 3 ) condition to the first term and the ( 4 ) (4) ( 4 ) , ( 5 ) (5) ( 5 ) conditions to the second term yields the following.
lim N → ∞ 1 L [ ∣ ∫ − δ δ [ f ( λ + t ) − f ( t ) ] D N ( π λ L ) d λ ∣ + ∣ ∫ λ ∉ [ − δ , δ ] [ f ( λ + t ) − f ( t ) ] D N ( π λ L ) d λ ∣ ] ≤ lim N → ∞ 1 L [ ∣ ∫ − δ δ ϵ D N ( π λ L ) d λ ∣ + 2 M ϵ ] = lim N → ∞ ϵ L ( ∣ ∫ − δ δ D N ( π λ L ) d λ ∣ + 2 M ) = ε ′
\begin{align*}
&\lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \left[ \left|\int_{-\delta}^{\delta} {\color{red} \left[ f(\lambda+t)-f(t) \right] } D_{N}\left( \dfrac{\pi \lambda}{L}\right) d\lambda \right| +\left| \int_{\lambda \notin[-\delta,\delta]} {\color{blue} \left[ f(\lambda+t)-f(t) \right]} {\color{orange}D_{N}\left( \dfrac{\pi \lambda}{L}\right) } d\lambda \right| \right] \\
&\le \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \left[ \left|\int_{-\delta}^{\delta} {\color{red} \epsilon} D_{N}\left( \dfrac{\pi \lambda}{L}\right) d\lambda \right| + {\color{blue}2M} {\color{orange}\epsilon} \right] \\
&= \lim \limits_{N \rightarrow \infty} \dfrac{\epsilon}{L} \left( \left|\int_{-\delta}^{\delta} D_{N}\left( \dfrac{\pi \lambda}{L}\right) d\lambda \right| +2M \right) \\
&= \varepsilon^{\prime}
\end{align*}
N → ∞ lim L 1 [ ∫ − δ δ [ f ( λ + t ) − f ( t ) ] D N ( L πλ ) d λ + ∫ λ ∈ / [ − δ , δ ] [ f ( λ + t ) − f ( t ) ] D N ( L πλ ) d λ ] ≤ N → ∞ lim L 1 [ ∫ − δ δ ϵ D N ( L πλ ) d λ + 2 M ϵ ] = N → ∞ lim L ϵ ( ∫ − δ δ D N ( L πλ ) d λ + 2 M ) = ε ′
Since the above equation must hold for all ε > 0 \varepsilon >0 ε > 0 , it must consequently hold for all ε ′ > 0 \varepsilon^{\prime}>0 ε ′ > 0 . Therefore, we obtain the following equation.
∣ lim N → ∞ S N f ( t ) − f ( t ) ∣ = 0
\left| \lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)-f(t) \right|=0
N → ∞ lim S N f ( t ) − f ( t ) = 0
Hence, the Fourier series of f f f converges at the continuous point t t t to f f f .
lim N → ∞ S N f ( t ) = 1 2 a 0 + ∑ n = 1 ∞ ( a n cos n π t L + b n sin n π t L ) = f ( t )
\lim \limits_{N \rightarrow \infty} S^{f}_{N}(t) = \dfrac{1}{2}a_{0}+\sum \limits_{n=1}^{\infty}\left( a_{n}\cos\dfrac{n\pi t}{L}+b_{n}\sin\dfrac{n\pi t}{L} \right) = f(t)
N → ∞ lim S N f ( t ) = 2 1 a 0 + n = 1 ∑ ∞ ( a n cos L nπ t + b n sin L nπ t ) = f ( t )
■