logo

The Fourier Series of a Riemann Integrable Function Converges 📂Fourier Analysis

The Fourier Series of a Riemann Integrable Function Converges

Theorem[^1]

Let’s assume that the function ff is Riemann integrable on the interval [L, L)[-L,\ L). Then, for any point of continuity tt, the Fourier series limNSNf(t)\lim \limits_{N \to \infty }S^{f}_{N}(t) of ff converges to f(t)f(t).

limNSNf(t)=f(t) \lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)=f(t)

Where

SNf(t)=a02+n=1N(ancosnπtL+bnsinnπtL)a0=1LLLf(t)dtan=1LLLf(t)cosnπtLdtbn=1LLLf(t)sinnπtLdt \begin{align*} S^{f}_{N}(t)&=\dfrac{a_{0}}{2}+\sum \limits_{n=1}^{N} \left( a_{n} \cos \dfrac{n\pi t}{L} + b_{n}\sin\dfrac{n\pi t} {L} \right) \\ a_{0} &=\dfrac{1}{L}\int_{-L}^{L}f(t)dt \\ a_{n} &= \dfrac{1}{L}\int_{-L}^{L} f(t)\cos\dfrac{n\pi t}{L} dt \\ b_{n}&=\dfrac{1}{L}\int_{-L}^{L}f(t)\sin\dfrac{n\pi t}{L}dt \end{align*}

Proof

Strategy: The proof concludes by showing that limNSNf(t)f(t)=0\left| \lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)-f(t) \right|=0.

Relationship between Fourier series and the Dirichlet kernel

SNf(t)=1LLLf(x)DN(π(xt)L)dx S^{f}_{N}(t)=\dfrac{1}{L}\int_{-L}^{L}f(x)D_{N}\left(\dfrac{\pi (x-t)}{L}\right)dx

From the above fact, we obtain the following equation.

limNSNf(t)f(t)=limN1LLLf(x)DN(π(xt)L)dxf(t) \begin{equation} \lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)-f(t) =\lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} f(x)D_{N}\left( \dfrac{\pi (x-t)}{L}\right)dx -f(t) \end{equation}

Integration of the Dirichlet kernel

1LLLDN(π(xt)L)dx=1 \dfrac{1}{L}\int_{-L}^{L}D_{N}\left( \dfrac{\pi (x-t)}{L} \right)dx=1

Multiplying both sides of the above equation by f(t)f(t) gives the following equation.

1LLLf(t)DN(π(xt)L)dx=f(t) \dfrac{1}{L}\int_{-L}^{L} f(t) D_{N}\left( \dfrac{\pi (x-t)}{L} \right)dx = f(t)

Substituting this into (1)(1) and arranging gives the following result.

limNSNf(t)f(t)=limN1LLLf(x)DN(π(xt)L)dxf(t)=limN1LLLf(x)DN(π(xt)L)dx1LLLf(t)DN(π(xt)L)dx=limN1LLL[f(x)f(t)]DN(π(xt)L)dx \begin{align*} &\lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)-f(t) \\ &= \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} f(x)D_{N}\left( \dfrac{\pi (x-t)}{L}\right)dx -f(t) \\ &= \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} f(x)D_{N}\left( \dfrac{\pi (x-t)}{L}\right)dx -\dfrac{1}{L}\int_{-L}^{L} f(t) D_{N}\left( \dfrac{\pi (x-t)}{L}\right)dx \\ &= \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} \Big[ f(x)-f(t) \Big] D_{N}\left( \dfrac{\pi (x-t)}{L}\right)dx \end{align*}

Substituting xt=λx-t=\lambda here yields the following result.

limN1LLtLt[f(λ+t)f(t)]DN(πλL)dλ \begin{equation} \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L-t}^{L-t} \Big[ f(\lambda+t)-f(t) \Big] D_{N}\left( \dfrac{\pi \lambda}{L} \right)d\lambda \end{equation}

Since f(x)f(x) is continuous at tt, by definition, there exists δ>0\delta>0 that satisfies the following for s,t[L, L)s,t\in [-L,\ L) and ε>0\varepsilon >0.

δ>0s.t. st<δ    f(s)f(t)<ε \begin{equation} \exists \delta>0\quad \text{s.t. } \left| s-t \right|<\delta \implies \left| f(s)-f(t) \right| <\varepsilon \end{equation}

The Dirichlet kernel converges to the Dirac delta function limnDn(t)=δ(t) \lim \limits_{n \to \infty} D_{n}(t)=\delta (t)

And due to the above fact, for a fixed positive number δ>0\delta>0, there exists a natural number nn such that x>δ|x|>\delta and when N>nN \gt n, DN(πxL)<ε\left| D_{N}\left( \dfrac{\pi x}{L} \right) \right| \lt \varepsilon.

nNs.t. x>δ, N>n    DN(πxL)<ε \begin{equation} \exists n\in \mathbb{N}\quad \text{s.t. } \left| x \right| > \delta,\ N>n \implies \left| D_{N} \left( \frac{\pi x}{L} \right) \right| < \varepsilon \end{equation}

Moreover, since f(x)f(x) is assumed to be Riemann integrable, it is bounded. Therefore, a real number MM exists that satisfies f(t)<M|f(t)| < M.

Ms.t. f(t)<M \begin{equation} \exists M\quad \text{s.t. } \left| f(t) \right| <M \end{equation}

Now, dividing the range of integration for (2)(2) yields the following inequality.

limNSNf(t)f(t)=limN1LLtLt[f(λ+t)f(t)]DN(πλL)dλlimN1L[δδ[f(λ+t)f(t)]DN(πλL)dλ+λ[δ,δ][f(λ+t)f(t)]DN(πλL)dλ] \begin{align*} &| \lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)-f(t)| \\ &= \lim \limits_{N \rightarrow \infty} \left| \dfrac{1}{L} \int_{-L-t}^{L-t} \left[ f(\lambda+t)-f(t) \right] D_{N}\left( \dfrac{\pi \lambda}{L}\right)d\lambda \right| \\ &\le \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \left[ \left|\int_{-\delta}^{\delta} \left[ f(\lambda+t)-f(t) \right] D_{N}\left( \dfrac{\pi \lambda}{L}\right) d\lambda \right| +\left| \int_{\lambda \notin[-\delta,\delta]} \left[ f(\lambda+t)-f(t) \right] D_{N}\left( \dfrac{\pi \lambda}{L}\right) d\lambda \right| \right] \end{align*}

Applying the (3)(3) condition to the first term and the (4)(4), (5)(5) conditions to the second term yields the following.

limN1L[δδ[f(λ+t)f(t)]DN(πλL)dλ+λ[δ,δ][f(λ+t)f(t)]DN(πλL)dλ]limN1L[δδϵDN(πλL)dλ+2Mϵ]=limNϵL(δδDN(πλL)dλ+2M)=ε \begin{align*} &\lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \left[ \left|\int_{-\delta}^{\delta} {\color{red} \left[ f(\lambda+t)-f(t) \right] } D_{N}\left( \dfrac{\pi \lambda}{L}\right) d\lambda \right| +\left| \int_{\lambda \notin[-\delta,\delta]} {\color{blue} \left[ f(\lambda+t)-f(t) \right]} {\color{orange}D_{N}\left( \dfrac{\pi \lambda}{L}\right) } d\lambda \right| \right] \\ &\le \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \left[ \left|\int_{-\delta}^{\delta} {\color{red} \epsilon} D_{N}\left( \dfrac{\pi \lambda}{L}\right) d\lambda \right| + {\color{blue}2M} {\color{orange}\epsilon} \right] \\ &= \lim \limits_{N \rightarrow \infty} \dfrac{\epsilon}{L} \left( \left|\int_{-\delta}^{\delta} D_{N}\left( \dfrac{\pi \lambda}{L}\right) d\lambda \right| +2M \right) \\ &= \varepsilon^{\prime} \end{align*}

Since the above equation must hold for all ε>0\varepsilon >0, it must consequently hold for all ε>0\varepsilon^{\prime}>0. Therefore, we obtain the following equation.

limNSNf(t)f(t)=0 \left| \lim \limits_{N \rightarrow \infty} S^{f}_{N}(t)-f(t) \right|=0

Hence, the Fourier series of ff converges at the continuous point tt to ff.

limNSNf(t)=12a0+n=1(ancosnπtL+bnsinnπtL)=f(t) \lim \limits_{N \rightarrow \infty} S^{f}_{N}(t) = \dfrac{1}{2}a_{0}+\sum \limits_{n=1}^{\infty}\left( a_{n}\cos\dfrac{n\pi t}{L}+b_{n}\sin\dfrac{n\pi t}{L} \right) = f(t)