logo

Orthogonality of Legendre Polynomials 📂Functions

Orthogonality of Legendre Polynomials

Theorem

In the interval [1, 1][-1,\ 1], Legendre polynomials form an orthogonal set.

11Pl(x)Pm(x)dx=22l+1δlm(l,m=0,1,2,) \int_{-1}^{1} P_{l}(x)P_{m}(x) dx =\frac{2}{2l+1}\delta_{lm} \quad (l, m = 0, 1, 2, \dots)

Proof

Case 1: lml \ne m

Legendre Differential Equation

The following differential equation is called the Legendre differential equation.

ddx[(1x)2dydx]+l(l+1)y=0 \dfrac{d}{d x}\left[ (1-x)^{2} \dfrac{d y}{d x} \right] +l(l+1)y = 0

Since Legendre polynomials are solutions to the Legendre differential equation, they satisfy the above equation. Substituting PlP_{l} and PmP_{m} into the equation, we get,

ddx[(1x2)Pl(x)]+l(l+1)Pl(x)=0ddx[(1x2)Pm(x)]+m(m+1)Pm(x)=0 \begin{align*} \dfrac{d}{dx} \left[ (1-x^2)P^{\prime}_{l}(x) \right] + l(l+1)P_{l}(x) &= 0 \\ \dfrac{d}{dx} \left[ (1-x^2)P^{\prime}_{m}(x) \right] + m(m+1)P_{m}(x) &= 0 \end{align*}

Multiplying both equations by Pm(x)P_{m}(x) and Pl(x)P_{l}(x) respectively and subtracting, we obtain the following.

Pmddx[(1x2)Pl]Plddx[(1x2)Pm]+[l(l+1)m(m+1)]PlPm=0 \begin{equation} P_{m}\dfrac{d}{dx}\left[ (1-x^2)P^{\prime}_{l} \right] - P_{l}\dfrac{d}{dx}[(1-x^2)P^{\prime}_{m}] + [l(l+1)-m(m+1)]P_{l}P_{m} = 0 \end{equation}

Meanwhile, the following equation holds.

ddx[(1x2)(PmPlPlPm)]=ddx[(1x2)PlPm]ddx[(1x2)PmPl] \begin{align*} & \dfrac{d}{dx}[(1-x^2)(P_{m}P^{\prime}_{l}-P_{l}P^{\prime}_{m})] \\ &= \dfrac{d}{dx}[{\color{blue}(1-x^2)P^{\prime}_{l}}P_{m}] -\dfrac{d}{dx}[{\color{blue}(1-x^2)P^{\prime}_{m}}P_{l}] \end{align*}

Thinking of the blue-painted part as one function and expanding the equation with the product rule gives,

ddx[(1x2)Pl]Pm+(1x2)PlPmddx[(1x2)Pm]Pl(1x2)PmPl=ddx[(1x2)Pl]Pmddx[(1x2)Pm]Pl \begin{align*} & \dfrac{d}{dx}[(1-x^2)P^{\prime}_{l}]P_{m}+(1-x^2)P^{\prime}_{l}P^{\prime}_{m}-\dfrac{d}{dx}[(1-x^2)P^{\prime}_{m}]P_{l}-(1-x^2)P^{\prime}_{m}P^{\prime}_{l} \\ &= \dfrac{d}{dx}[(1-x^2)P^{\prime}_{l}]P_{m}-\dfrac{d}{dx}[(1-x^2)P^{\prime}_{m}]P_{l} \end{align*}

This is the same as the first two terms of (1)(1). Thus, (1)(1) can be organized as follows.

ddx[(1x2)(PmPlPlPm)]+[l(l+1)m(m+1)]PlPm=0 \dfrac{d}{dx}[(1-x^2)(P_{m}P^{\prime}_{l}-P_{l}P^{\prime}_{m})]+ [l(l+1)-m(m+1)]P_{l}P_{m}=0

Integrating both sides over the interval [1,1][-1, 1] yields,

(1x2)(PmPlPlPm)11+[l(l+1)m(m+1)]11Pl(x)Pm(x)dx=0 (1-x^2)(P_{m}P^{\prime}_{l}-P_{l}P^{\prime}_{m})\Big|_{-1}^{1} +[l(l+1)-m(m+1)]\int_{-1}^{1}P_{l}(x)P_{m}(x)dx=0

The first term is (1x2)x=±1=0(1-x^2)\Big|_{x = \pm 1}=0, so it becomes 00. Due to the condition of l,ml, m, the constant in front of the integration in the second term absolutely cannot be 00. Therefore, we get the following.

11Pl(x)Pm(x)dx=0 \int_{-1}^{1}P_{l}(x)P_{m}(x)dx=0

Case 2: l=ml = m

Recurrence relation of Legendre polynomials

lPl(x)=xPl(x)Pl1(x) lP_{l}(x) = xP^{\prime}_{l}(x) - P^{\prime}_{l-1}(x)

Multiplying both sides of the above equation by Pl(x)P_{l}(x) and integrating gives,

l11[Pl(x)]2dx=11xPl(x)Pl(x)dx11Pl(x)Pl1(x)dx. \begin{equation} l\int_{-1}^{1}[P_{l}(x)]^{2} dx= \int_{-1}^{1}xP_{l}(x)P^{\prime}_{l}(x)dx -\int_{-1}^{1} P_{l}(x)P^{\prime}_{l-1}(x)dx. \end{equation}

Here, Pl1(x)P^{\prime}_{l-1}(x) is a polynomial of degree l2l-2, and since Legendre polynomials are orthogonal to polynomials of lower degree, the last term on the right-hand side is 00. The first term on the right-hand side can be solved with integration by parts.

11xPl(x)Pl(x)dx=11x2[2Pl(x)Pl(x)]dx=x2[Pl(x)]2111211[Pl(x)]2dx=11211[Pl(x)]2dx. \begin{align} \int_{-1}^{1}xP_{l}(x)P^{\prime}_{l}(x)dx &= \int_{-1}^{1}\frac{ x}{2}[2P_{l}(x)P^{\prime}_{l}(x)]dx \nonumber \\ &= \frac{ x}{2}[P_{l}(x)]^{2}\bigg|_{-1}^{1}-\frac{1}{2}\int_{-1}^{1}[P_{l}(x)]^{2}dx \nonumber \\ &= 1-\frac{1}{2}\int_{-1}^{1}[P_{l}(x)]^{2}dx. \end{align}

The third equation is valid due to Pl(1)=1P_{l}(1)=1. Therefore, substituting (3)(3) into (2)(2) gives,

l11[Pl(x)]2dx=11211[Pl(x)]2dx    11[Pl(x)]2dx=22l+1 \begin{align*} && l\int_{-1}^{1}[P_{l}(x)]^{2} dx &= 1-\frac{1}{2}\int_{-1}^{1}[P_{l}(x)]^{2}dx \\ \implies && \int_{-1}^{1}[P_{l}(x)]^{2} dx &= \frac{2}{2l+1} \end{align*}