Rotation of Separation Vector
Equation
$$ \nabla \times \dfrac{\crH }{\cR ^2} = \mathbf{0} $$
Explanation
There is nothing particularly special about this formula. It emerges in the process of calculating the divergence of a magnetic field, and its calculation is not straightforward, hence the separate explanation.
Proof
If we refer to $\bcR=(x-x^{\prime})\hat{\mathbf{x}} + (y-y^{\prime})\hat{\mathbf{y}} + (z-z^{\prime})\hat{\mathbf{z}}$ as a component vector, it can be represented as follows:
$$ | \bcR |=\cR=\sqrt{(x-x^{\prime})^2+(y-y^{\prime})^2 + (z-z^{\prime})^2} $$
$$ \crH = \dfrac{ \bcR } { \cR}=\dfrac{(x-x^{\prime})\hat{\mathbf{x}} + (y-y^{\prime})\hat{\mathbf{y}} + (z-z^{\prime})\hat{\mathbf{z}}}{\sqrt{(x-x^{\prime})^2+(y-y^{\prime})^2 + (z-z^{\prime})^2}} $$
$$ \dfrac{\crH}{\cR^2}=\dfrac{1}{(x-x^{\prime})^2+(y-y^{\prime})^2 + (z-z^{\prime})^2}\dfrac{(x-x^{\prime})\hat{\mathbf{x}} + (y-y^{\prime})\hat{\mathbf{y}} + (z-z^{\prime})\hat{\mathbf{z}}}{\sqrt{(x-x^{\prime})^2+(y-y^{\prime})^2 + (z-z^{\prime})^2}} $$
For the sake of simplicity, let’s say
$$ \dfrac{\crH }{\cR ^2} = A_{x} \hat{\mathbf{x}} + A_{y} \hat{\mathbf{y}} + A_{z}\hat{\mathbf{z}} $$
Then,
$$ \begin{align*} \nabla \times \dfrac{ \crH}{\cR^2} &= \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y} & \dfrac{\partial }{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix} \\ &= \left( \dfrac{ \partial}{\partial y} A_{z} -\dfrac{\partial }{\partial z}A_{y} \right) \hat{\mathbf{x}} + \left( \dfrac{ \partial}{\partial z} A_{x} -\dfrac{\partial }{\partial x}A_{z} \right) \hat{\mathbf{y}} +\left( \dfrac{ \partial}{\partial x} A_{y} -\dfrac{\partial }{\partial y}A_{x} \right) \hat{\mathbf{z}} \end{align*} $$
Let’s first calculate the $\hat{\mathbf{x}}$ term.
$$ \begin{align*} & \dfrac{\partial }{\partial y} A_{z} - \dfrac{\partial}{\partial z}A_{y} \\ =&\ \dfrac{\partial }{\partial y} \left[ \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{3}{2}}(z-z^{\prime}) \right] \\ &- \dfrac{\partial }{\partial z} \left[ \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{3}{2}}(y-y^{\prime}) \right] \\ =&\ -\dfrac{3}{2}\left[ \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{5}{2}}(z-z^{\prime}) \right]\cdot 2(y-y^{\prime}) \\ & +\dfrac{3}{2}\left[ \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{5}{2}}(y-y^{\prime}) \right]\cdot 2(z-z^{\prime}) \\ =&\ -3 \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{5}{2}}(z-z^{\prime})(y-y^{\prime}) \\ & +3 \left[ (x-x^{\prime})^2+(y-y^{\prime})^2+(z-z^{\prime})^2 \right]^{-\frac{5}{2}}(y-y^{\prime})(z-z^{\prime}) \\ =&\ 0 \end{align*} $$
By using the same method, the $\hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$ terms also lead to $0$.
$$ \therefore \nabla \times \dfrac{ \crH}{\cR^2} = \mathbf{0} $$
■