logo

Existence and Uniqueness of Solutions for Initial Value Problems of First-Order Ordinary Differential Equations 📂Odinary Differential Equations

Existence and Uniqueness of Solutions for Initial Value Problems of First-Order Ordinary Differential Equations

Theorem1

Let EE be open in Rn\mathbb{R}^{n} and given the following initial value problem concerning fC1(E)f \in C^{1} (E) and ϕ0E\phi_{0} \in E.

{ϕ˙=f(ϕ)ϕ(0)=ϕ0 \begin{cases} \dot{ \phi } = \mathbf{f} ( \phi ) \\ \phi (0) = \phi_{0} \end{cases}

Then, there exists a unique solution ϕ(t)\phi (t) to the given initial value problem in some interval [h,h]R[-h,h] \subset \mathbb{R}.


  • C1C^{1} is a set of functions with continuous derivatives.

Proof

Strategy: Show existence first, then uniqueness. The ball in Euclidean space Rn\mathbb{R}^{n} is denoted by B(x0;d):={xRn:x0x<d}B[x0;d]:={xRn:x0xd} \begin{align*} B \left( \mathbf{x}_{0} ; d \right) :=& \left\{ \mathbf{x} \in \mathbb{R}^{n} : | \mathbf{x}_{0} - \mathbf{x} | < d \right\} \\ B \left[ \mathbf{x}_{0} ; d \right] :=& \left\{ \mathbf{x} \in \mathbb{R}^{n} : | \mathbf{x}_{0} - \mathbf{x} | \le d \right\} \end{align*} It is obviously permissible to use the Lipschitz condition in place of fC1(E)f \in C^{1} (E) for a stronger condition.


Part 1. ff is locally Lipschitz

Locally Lipschitz condition: If fC1(E)f \in C^{1}(E), then ff is locally Lipschitz in EE.

Assuming fy\dfrac{\partial f}{\partial y} is continuous, by the theorem, ff is locally Lipschitz. Hence, according to the definition of locally Lipschitz, for all x,yB(ϕ0;ε)E\mathbf{x} , \mathbf{y} \in B \left( \phi_{0} ; \varepsilon \right) \subset E, there exists a ε,K>0\varepsilon, K > 0 that satisfies the following equation.

f(t,y1)f(t,y2)Ky1y2 \left| f(t,y_{1}) - f(t,y_{2}) \right| \le K \left| y_{1} - y_{2} \right|

Relation between continuity and compactness: Let XX be a compact metric space, YY a metric space, and f:XYf:X\to Y continuous. Then, f(X)f(X) is compact.

Since ff is continuous, it is bounded on the compact set B:=B[ϕ0;ε2]B : = B \left[ \phi_{0} ; {{ \varepsilon } \over {2}} \right], and M:=supxBf(x)\displaystyle M : = \sup_{ \mathbf{x} \in B } | f ( \mathbf{x} ) | can be obtained.


Part 2. Picard Method

Given an initial value problem with EE open in Rn\mathbb{R}^{n} and concerning fC1(E)f \in C^{1} (E)

{ϕ˙=f(ϕ)ϕ(0)=ϕ0 \begin{cases} \dot{ \phi } = f ( \phi ) \\ \phi (0) = \phi_{0} \end{cases} Defining the sequence of functions {uk(t)}k=0\left\{ \mathbf{u}_{k} (t) \right\} _{ k =0}^{ \infty } as

{u0(t)=ϕ0uk+1(t)=ϕ0+0tf(uk(s))ds \begin{cases} \mathbf{u}_{0} (t) = \phi_{0} \\ \displaystyle \mathbf{u}_{k+1} (t) = \phi_{0} + \int_{0}^{t} f \left( \mathbf{u}_{k} (s) \right) ds \end{cases}

then the continuous function u(t):=limkuk(t)\displaystyle \mathbf{u} (t) := \lim_{k \to \infty} \mathbf{u}_{k} (t) is the solution to the given initial value problem.

Assume that the continuous function uk(t)\mathbf{u}_{k} (t) is defined as

{u0(t)=ϕ0uk+1(t)=ϕ0+0tf(uk(s))ds \begin{cases} \mathbf{u}_{0} (t) = \phi_{0} \\ \displaystyle \mathbf{u}_{k+1} (t) = \phi_{0} + \int_{0}^{t} f \left( \mathbf{u}_{k} (s) \right) ds \end{cases}

uk\mathbf{u}_{k} and ff are continuous in [h,h][-h,h], so (fuk)( f \circ \mathbf{u}_{k} ) is also continuous.

Fundamental Theorem of Calculus: If the function ff is continuous on the closed interval [a,b][a,b], then the function F(x)=axf(t)dt\displaystyle F(x) = \int_{a}^{x} f(t) dt is continuous on [a,b][a,b], differentiable on (a,b)(a,b), and dF(x)dx=f(x){{dF(x)} \over {dx}} = f(x)

Then, by the fundamental theorem of calculus, uk+1(t)=ϕ0+0tf(uk(s))ds\displaystyle \mathbf{u}_{k+1} (t) = \phi_{0} + \int_{0}^{t} f \left( \mathbf{u}_{k} (s) \right) ds is also continuous in [h,h][-h, h]. With a slight rearrangement and setting up an inequality, for all t[h,h]t \in [-h, h],

uk+1(t)ϕ00tf(uk(s))ds0hf(uk(s))ds0hMdsMh \begin{align*} | \mathbf{u}_{k+1} (t) - \phi_{0} | \le & \int_{0}^{t} \left| f \left( \mathbf{u}_{k} (s) \right) \right| ds \\ \le & \int_{0}^{h} \left| f \left( \mathbf{u}_{k} (s) \right) \right| ds \\ \le & \int_{0}^{h} M ds \\ \le & Mh \end{align*}

In other words, by choosing h(0,ε2M]\displaystyle h \in \left( 0 , {{ \varepsilon } \over { 2M }} \right], uk(t)\mathbf{u}_{k} (t) can be defined as a continuous function for all t[h,h]t \in [-h,h] and k=1,2,3k = 1,2,3 \cdots.


Part 3. Cauchy Sequence {uk}k=0\left\{ \mathbf{u}_{k} \right\}_{k=0}^{\infty}

We will calculate the supremum for t[h,h]t \in [-h , h ] over uj+1uj| \mathbb{ u }_{ j + 1 } - \mathbb{ u }_{ j } |.

  • Case 1. j=1j = 1
    u2(t)u1(t)0tf(u1(s))f(u0(s))dsK0tu1(s)u0(s)dsKhsupt[h,h]u1(t)ϕ0Khε2 \begin{align*} | \mathbb{ u }_{ 2 } ( t ) - \mathbb{ u }_{ 1 } ( t ) | \le & \int_{0}^{t} \left| f \left( \mathbf{u}_{1} (s) \right) - f \left( \mathbf{u}_{0} (s) \right) \right| ds \\ \le & K \int_{0}^{t} | \mathbb{ u }_{ 1 } ( s ) - \mathbb{ u }_{ 0 } ( s ) | ds \\ \le & K h \sup_{ t \in [ - h , h ] } | \mathbb{ u }_{ 1 } ( t ) - \phi_{ 0 } | \\ \le & {{ K h \varepsilon } \over { 2 }} \end{align*}
  • Case 2. j>1j > 1
    uj+1(t)uj(t)0tf(uj(s))f(uj1(s))dsK0tuj(s)uj1(s)dsKhsupt[h,h]uj(t)uj1(t) \begin{align*} | \mathbb{ u }_{ j+1 } ( t ) - \mathbb{ u }_{ j } ( t ) | \le & \int_{0}^{t} \left| f \left( \mathbf{u}_{ j } (s) \right) - f \left( \mathbf{u}_{ j - 1 } (s) \right) \right| ds \\ \le & K \int_{0}^{t} | \mathbb{ u }_{ j } ( s ) - \mathbb{ u }_{ j - 1 } ( s ) | ds \\ \le & K h \sup_{ t \in [ - h , h ] } | \mathbb{ u }_{ j } ( t ) - \mathbf{u}_{j-1} ( t ) \end{align*}

Recursively, by Case 1.

uj+1(t)uj(t)(Kh)jε2 | \mathbb{ u }_{ j+1 } ( t ) - \mathbb{ u }_{ j } ( t ) | \le {{ (Kh)^{j} \varepsilon } \over {2}}

Let m>k>Nm > k > N and h(0,1K)\displaystyle h \in \left( 0 , {{1} \over { K }} \right), and assume c:=Khc := K h, then

um(t)uk(t)j=km1uj+1(t)uj(t)j=Nuj+1(t)uj(t)j=N(Kh)jε2=cN1cε2 \begin{align*} | \mathbb{ u }_{ m } ( t ) - \mathbb{ u }_{ k } ( t ) | \le & \sum_{j = k}^{m-1} | \mathbf{u}_{j+1} (t) - \mathbf{u}_{j} (t) | \\ \le & \sum_{j = N}^{ \infty } | \mathbf{u}_{j+1} (t) - \mathbf{u}_{j} (t) | \\ \le & \sum_{j = N}^{ \infty } {{ ( K h )^{ j } \varepsilon } \over {2}} = {{ c^{N} } \over { 1 - c}} {{ \varepsilon } \over {2}} \end{align*}

c<1|c| < 1, so when NN \to \infty, cN1cε2\displaystyle {{ c^{N} } \over { 1 - c}} {{ \varepsilon } \over {2}} converges to 00. In other words, for all ε>0\varepsilon > 0,

m,kN    umuk=supt[h,h]um(t)uk(t)<ε m , k \ge N \implies \| \mathbf{u}_{m} - \mathbf{u}_{k} \| = \sup_{ t \in [-h , h ] } | \mathbf{u}_{m} ( t ) - \mathbf{u}_{k} ( t ) | < \varepsilon

there exists a NN that satisfies it. This means {uk}k=0\left\{ \mathbf{u}_{k} \right\}_{k=0}^{\infty} is a Cauchy sequence in C[h,h]C [ - h , h ]. (Of course, the selected hh must satisfy 0<h<min(bM,1K)\displaystyle 0 < h < \min \left( {{b} \over {M}} , {{1} \over {K}} \right).)


Part 4. Banach Space

Since C[h,h]C [ -h , h ] is a Banach space, u(t):=limkuk(t)\displaystyle \mathbf{u} (t) := \lim_{k \to \infty} \mathbf{u}_{k} (t) is a continuous function. As u\mathbf{u} is continuous, so is (fu)( f \circ \mathbf{u} ) , and by the fundamental theorem of calculus,

u˙(t)=(ϕ0+0tf(u(s))ds)=f(u(t)) \dot{\mathbf{u} } (t) = \left( \phi_{0} + \int_{0}^{t} f \left( u(s) \right) ds \right)' = f \left( \mathbf{u} (t) \right)

Also, if t=0t = 0 then u(0)=ϕ0+00f(u(s))ds=ϕ0+0=ϕ0\displaystyle \mathbf{u} (0) = \phi_{0} + \int_{0}^{0} f \left( u(s) \right) ds = \phi_{0} + 0 = \phi_{0} Hence, u\mathbf{u} exists as a solution to the given initial value problem for all t[h,h]t \in [ - h , h ].


Part 5. Uniqueness

Assuming u\mathbf{u} and v\mathbf{v} are solutions to the given initial value problem. If u(t)v(t)| \mathbf{u} (t) - \mathbf{v} (t) | maximizes the value for some tt, let it be t0[h,h]t_{0} \in [-h , h],

uv=supt[h,h]u(t)v(t)=0t0[f(u(s))f(v(s))]ds0t0f(u(s))f(v(s))dsK0t0u(s)v(s)dsKhsups[h,h]u(s)v(s)Khuv \begin{align*} \| \mathbf{u} - \mathbf{v} \| =& \sup_{t \in [-h,h ] } | \mathbf{u} (t) - \mathbf{v} (t) | \\ =& \left| \int_{0}^{t_{0} } \left[ f \left( \mathbf{u} (s) \right) - f \left( \mathbf{v} (s) \right) \right] ds \right| \\ \le & \int_{0}^{t_{0} } \left| f \left( \mathbf{u} (s) \right) - f \left( \mathbf{v} (s) \right) \right| ds \\ \le & K \int_{0}^{t_{0} } \left|\mathbf{u} (s) - \mathbf{v} (s) \right| ds \\ \le & K h \sup_{s \in [-h, h ] } \left| \mathbf{u} (s) - \mathbf{v} (s) \right| \\ \le & K h \| \mathbf{u} - \mathbf{v} \| \end{align*}

In summary, since uvKhuv\| \mathbf{u} - \mathbf{v} \| \le K h \| \mathbf{u} - \mathbf{v} \| and because of Kh<1Kh < 1, it must be uv=0\| \mathbf{u} - \mathbf{v} \| = 0. Therefore, in [h,h][-h, h ], it must be u=v\| \mathbf{u} \| = \| \mathbf{v} \|.


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p83-90 ↩︎