Existence and Uniqueness of Solutions for Initial Value Problems of First-Order Ordinary Differential Equations
📂Odinary Differential Equations Existence and Uniqueness of Solutions for Initial Value Problems of First-Order Ordinary Differential Equations Theorem Let E E E be open in R n \mathbb{R}^{n} R n and given the following initial value problem concerning f ∈ C 1 ( E ) f \in C^{1} (E) f ∈ C 1 ( E ) and ϕ 0 ∈ E \phi_{0} \in E ϕ 0 ∈ E .
{ ϕ ˙ = f ( ϕ ) ϕ ( 0 ) = ϕ 0
\begin{cases} \dot{ \phi } = \mathbf{f} ( \phi ) \\ \phi (0) = \phi_{0} \end{cases}
{ ϕ ˙ = f ( ϕ ) ϕ ( 0 ) = ϕ 0
Then, there exists a unique solution ϕ ( t ) \phi (t) ϕ ( t ) to the given initial value problem in some interval [ − h , h ] ⊂ R [-h,h] \subset \mathbb{R} [ − h , h ] ⊂ R .
C 1 C^{1} C 1 is a set of functions with continuous derivatives.Proof Strategy: Show existence first, then uniqueness. The ball in Euclidean space R n \mathbb{R}^{n} R n is denoted by
B ( x 0 ; d ) : = { x ∈ R n : ∣ x 0 − x ∣ < d } B [ x 0 ; d ] : = { x ∈ R n : ∣ x 0 − x ∣ ≤ d }
\begin{align*}
B \left( \mathbf{x}_{0} ; d \right) :=& \left\{ \mathbf{x} \in \mathbb{R}^{n} : | \mathbf{x}_{0} - \mathbf{x} | < d \right\}
\\ B \left[ \mathbf{x}_{0} ; d \right] :=& \left\{ \mathbf{x} \in \mathbb{R}^{n} : | \mathbf{x}_{0} - \mathbf{x} | \le d \right\}
\end{align*}
B ( x 0 ; d ) := B [ x 0 ; d ] := { x ∈ R n : ∣ x 0 − x ∣ < d } { x ∈ R n : ∣ x 0 − x ∣ ≤ d }
It is obviously permissible to use the Lipschitz condition in place of f ∈ C 1 ( E ) f \in C^{1} (E) f ∈ C 1 ( E ) for a stronger condition.
Part 1. f f f is locally Lipschitz
Locally Lipschitz condition : If f ∈ C 1 ( E ) f \in C^{1}(E) f ∈ C 1 ( E ) , then f f f is locally Lipschitz in E E E .
Assuming ∂ f ∂ y \dfrac{\partial f}{\partial y} ∂ y ∂ f is continuous, by the theorem, f f f is locally Lipschitz. Hence, according to the definition of locally Lipschitz, for all x , y ∈ B ( ϕ 0 ; ε ) ⊂ E \mathbf{x} , \mathbf{y} \in B \left( \phi_{0} ; \varepsilon \right) \subset E x , y ∈ B ( ϕ 0 ; ε ) ⊂ E , there exists a ε , K > 0 \varepsilon, K > 0 ε , K > 0 that satisfies the following equation.
∣ f ( t , y 1 ) − f ( t , y 2 ) ∣ ≤ K ∣ y 1 − y 2 ∣
\left| f(t,y_{1}) - f(t,y_{2}) \right| \le K \left| y_{1} - y_{2} \right|
∣ f ( t , y 1 ) − f ( t , y 2 ) ∣ ≤ K ∣ y 1 − y 2 ∣
Relation between continuity and compactness : Let X X X be a compact metric space, Y Y Y a metric space, and f : X → Y f:X\to Y f : X → Y continuous. Then, f ( X ) f(X) f ( X ) is compact.
Since f f f is continuous, it is bounded on the compact set B : = B [ ϕ 0 ; ε 2 ] B : = B \left[ \phi_{0} ; {{ \varepsilon } \over {2}} \right] B := B [ ϕ 0 ; 2 ε ] , and M : = sup x ∈ B ∣ f ( x ) ∣ \displaystyle M : = \sup_{ \mathbf{x} \in B } | f ( \mathbf{x} ) | M := x ∈ B sup ∣ f ( x ) ∣ can be obtained.
Part 2. Picard Method
Given an initial value problem with E E E open in R n \mathbb{R}^{n} R n and concerning f ∈ C 1 ( E ) f \in C^{1} (E) f ∈ C 1 ( E )
{ ϕ ˙ = f ( ϕ ) ϕ ( 0 ) = ϕ 0
\begin{cases}
\dot{ \phi } = f ( \phi )
\\ \phi (0) = \phi_{0}
\end{cases}
{ ϕ ˙ = f ( ϕ ) ϕ ( 0 ) = ϕ 0
Defining the sequence of functions { u k ( t ) } k = 0 ∞ \left\{ \mathbf{u}_{k} (t) \right\} _{ k =0}^{ \infty } { u k ( t ) } k = 0 ∞ as
{ u 0 ( t ) = ϕ 0 u k + 1 ( t ) = ϕ 0 + ∫ 0 t f ( u k ( s ) ) d s
\begin{cases}
\mathbf{u}_{0} (t) = \phi_{0}
\\ \displaystyle \mathbf{u}_{k+1} (t) = \phi_{0} + \int_{0}^{t} f \left( \mathbf{u}_{k} (s) \right) ds
\end{cases}
⎩ ⎨ ⎧ u 0 ( t ) = ϕ 0 u k + 1 ( t ) = ϕ 0 + ∫ 0 t f ( u k ( s ) ) d s
then the continuous function u ( t ) : = lim k → ∞ u k ( t ) \displaystyle \mathbf{u} (t) := \lim_{k \to \infty} \mathbf{u}_{k} (t) u ( t ) := k → ∞ lim u k ( t ) is the solution to the given initial value problem.
Assume that the continuous function u k ( t ) \mathbf{u}_{k} (t) u k ( t ) is defined as
{ u 0 ( t ) = ϕ 0 u k + 1 ( t ) = ϕ 0 + ∫ 0 t f ( u k ( s ) ) d s
\begin{cases}
\mathbf{u}_{0} (t) = \phi_{0}
\\ \displaystyle \mathbf{u}_{k+1} (t) = \phi_{0} + \int_{0}^{t} f \left( \mathbf{u}_{k} (s) \right) ds
\end{cases}
⎩ ⎨ ⎧ u 0 ( t ) = ϕ 0 u k + 1 ( t ) = ϕ 0 + ∫ 0 t f ( u k ( s ) ) d s
u k \mathbf{u}_{k} u k and f f f are continuous in [ − h , h ] [-h,h] [ − h , h ] , so ( f ∘ u k ) ( f \circ \mathbf{u}_{k} ) ( f ∘ u k ) is also continuous.
Fundamental Theorem of Calculus : If the function f f f is continuous on the closed interval [ a , b ] [a,b] [ a , b ] , then the function F ( x ) = ∫ a x f ( t ) d t \displaystyle F(x) = \int_{a}^{x} f(t) dt F ( x ) = ∫ a x f ( t ) d t is continuous on [ a , b ] [a,b] [ a , b ] , differentiable on ( a , b ) (a,b) ( a , b ) , and
d F ( x ) d x = f ( x ) {{dF(x)} \over {dx}} = f(x) d x d F ( x ) = f ( x )
Then, by the fundamental theorem of calculus, u k + 1 ( t ) = ϕ 0 + ∫ 0 t f ( u k ( s ) ) d s \displaystyle \mathbf{u}_{k+1} (t) = \phi_{0} + \int_{0}^{t} f \left( \mathbf{u}_{k} (s) \right) ds u k + 1 ( t ) = ϕ 0 + ∫ 0 t f ( u k ( s ) ) d s is also continuous in [ − h , h ] [-h, h] [ − h , h ] . With a slight rearrangement and setting up an inequality, for all t ∈ [ − h , h ] t \in [-h, h] t ∈ [ − h , h ] ,
∣ u k + 1 ( t ) − ϕ 0 ∣ ≤ ∫ 0 t ∣ f ( u k ( s ) ) ∣ d s ≤ ∫ 0 h ∣ f ( u k ( s ) ) ∣ d s ≤ ∫ 0 h M d s ≤ M h
\begin{align*}
| \mathbf{u}_{k+1} (t) - \phi_{0} | \le & \int_{0}^{t} \left| f \left( \mathbf{u}_{k} (s) \right) \right| ds
\\ \le & \int_{0}^{h} \left| f \left( \mathbf{u}_{k} (s) \right) \right| ds
\\ \le & \int_{0}^{h} M ds
\\ \le & Mh
\end{align*}
∣ u k + 1 ( t ) − ϕ 0 ∣ ≤ ≤ ≤ ≤ ∫ 0 t ∣ f ( u k ( s ) ) ∣ d s ∫ 0 h ∣ f ( u k ( s ) ) ∣ d s ∫ 0 h M d s M h
In other words, by choosing h ∈ ( 0 , ε 2 M ] \displaystyle h \in \left( 0 , {{ \varepsilon } \over { 2M }} \right] h ∈ ( 0 , 2 M ε ] , u k ( t ) \mathbf{u}_{k} (t) u k ( t ) can be defined as a continuous function for all t ∈ [ − h , h ] t \in [-h,h] t ∈ [ − h , h ] and k = 1 , 2 , 3 ⋯ k = 1,2,3 \cdots k = 1 , 2 , 3 ⋯ .
Part 3. Cauchy Sequence { u k } k = 0 ∞ \left\{ \mathbf{u}_{k} \right\}_{k=0}^{\infty} { u k } k = 0 ∞
We will calculate the supremum for t ∈ [ − h , h ] t \in [-h , h ] t ∈ [ − h , h ] over ∣ u j + 1 − u j ∣ | \mathbb{ u }_{ j + 1 } - \mathbb{ u }_{ j } | ∣ u j + 1 − u j ∣ .
Case 1. j = 1 j = 1 j = 1 ∣ u 2 ( t ) − u 1 ( t ) ∣ ≤ ∫ 0 t ∣ f ( u 1 ( s ) ) − f ( u 0 ( s ) ) ∣ d s ≤ K ∫ 0 t ∣ u 1 ( s ) − u 0 ( s ) ∣ d s ≤ K h sup t ∈ [ − h , h ] ∣ u 1 ( t ) − ϕ 0 ∣ ≤ K h ε 2
\begin{align*}
| \mathbb{ u }_{ 2 } ( t ) - \mathbb{ u }_{ 1 } ( t ) | \le & \int_{0}^{t} \left| f \left( \mathbf{u}_{1} (s) \right) - f \left( \mathbf{u}_{0} (s) \right) \right| ds
\\ \le & K \int_{0}^{t} | \mathbb{ u }_{ 1 } ( s ) - \mathbb{ u }_{ 0 } ( s ) | ds
\\ \le & K h \sup_{ t \in [ - h , h ] } | \mathbb{ u }_{ 1 } ( t ) - \phi_{ 0 } |
\\ \le & {{ K h \varepsilon } \over { 2 }}
\end{align*}
∣ u 2 ( t ) − u 1 ( t ) ∣ ≤ ≤ ≤ ≤ ∫ 0 t ∣ f ( u 1 ( s ) ) − f ( u 0 ( s ) ) ∣ d s K ∫ 0 t ∣ u 1 ( s ) − u 0 ( s ) ∣ d s K h t ∈ [ − h , h ] sup ∣ u 1 ( t ) − ϕ 0 ∣ 2 K h ε Case 2. j > 1 j > 1 j > 1 ∣ u j + 1 ( t ) − u j ( t ) ∣ ≤ ∫ 0 t ∣ f ( u j ( s ) ) − f ( u j − 1 ( s ) ) ∣ d s ≤ K ∫ 0 t ∣ u j ( s ) − u j − 1 ( s ) ∣ d s ≤ K h sup t ∈ [ − h , h ] ∣ u j ( t ) − u j − 1 ( t )
\begin{align*}
| \mathbb{ u }_{ j+1 } ( t ) - \mathbb{ u }_{ j } ( t ) | \le & \int_{0}^{t} \left| f \left( \mathbf{u}_{ j } (s) \right) - f \left( \mathbf{u}_{ j - 1 } (s) \right) \right| ds
\\ \le & K \int_{0}^{t} | \mathbb{ u }_{ j } ( s ) - \mathbb{ u }_{ j - 1 } ( s ) | ds
\\ \le & K h \sup_{ t \in [ - h , h ] } | \mathbb{ u }_{ j } ( t ) - \mathbf{u}_{j-1} ( t )
\end{align*}
∣ u j + 1 ( t ) − u j ( t ) ∣ ≤ ≤ ≤ ∫ 0 t ∣ f ( u j ( s ) ) − f ( u j − 1 ( s ) ) ∣ d s K ∫ 0 t ∣ u j ( s ) − u j − 1 ( s ) ∣ d s K h t ∈ [ − h , h ] sup ∣ u j ( t ) − u j − 1 ( t ) Recursively, by Case 1.
∣ u j + 1 ( t ) − u j ( t ) ∣ ≤ ( K h ) j ε 2
| \mathbb{ u }_{ j+1 } ( t ) - \mathbb{ u }_{ j } ( t ) | \le {{ (Kh)^{j} \varepsilon } \over {2}}
∣ u j + 1 ( t ) − u j ( t ) ∣ ≤ 2 ( K h ) j ε
Let m > k > N m > k > N m > k > N and h ∈ ( 0 , 1 K ) \displaystyle h \in \left( 0 , {{1} \over { K }} \right) h ∈ ( 0 , K 1 ) , and assume c : = K h c := K h c := K h , then
∣ u m ( t ) − u k ( t ) ∣ ≤ ∑ j = k m − 1 ∣ u j + 1 ( t ) − u j ( t ) ∣ ≤ ∑ j = N ∞ ∣ u j + 1 ( t ) − u j ( t ) ∣ ≤ ∑ j = N ∞ ( K h ) j ε 2 = c N 1 − c ε 2
\begin{align*}
| \mathbb{ u }_{ m } ( t ) - \mathbb{ u }_{ k } ( t ) | \le & \sum_{j = k}^{m-1} | \mathbf{u}_{j+1} (t) - \mathbf{u}_{j} (t) |
\\ \le & \sum_{j = N}^{ \infty } | \mathbf{u}_{j+1} (t) - \mathbf{u}_{j} (t) |
\\ \le & \sum_{j = N}^{ \infty } {{ ( K h )^{ j } \varepsilon } \over {2}} = {{ c^{N} } \over { 1 - c}} {{ \varepsilon } \over {2}}
\end{align*}
∣ u m ( t ) − u k ( t ) ∣ ≤ ≤ ≤ j = k ∑ m − 1 ∣ u j + 1 ( t ) − u j ( t ) ∣ j = N ∑ ∞ ∣ u j + 1 ( t ) − u j ( t ) ∣ j = N ∑ ∞ 2 ( K h ) j ε = 1 − c c N 2 ε
∣ c ∣ < 1 |c| < 1 ∣ c ∣ < 1 , so when N → ∞ N \to \infty N → ∞ , c N 1 − c ε 2 \displaystyle {{ c^{N} } \over { 1 - c}} {{ \varepsilon } \over {2}} 1 − c c N 2 ε converges to 0 0 0 . In other words, for all ε > 0 \varepsilon > 0 ε > 0 ,
m , k ≥ N ⟹ ∥ u m − u k ∥ = sup t ∈ [ − h , h ] ∣ u m ( t ) − u k ( t ) ∣ < ε
m , k \ge N \implies \| \mathbf{u}_{m} - \mathbf{u}_{k} \| = \sup_{ t \in [-h , h ] } | \mathbf{u}_{m} ( t ) - \mathbf{u}_{k} ( t ) | < \varepsilon
m , k ≥ N ⟹ ∥ u m − u k ∥ = t ∈ [ − h , h ] sup ∣ u m ( t ) − u k ( t ) ∣ < ε
there exists a N N N that satisfies it. This means { u k } k = 0 ∞ \left\{ \mathbf{u}_{k} \right\}_{k=0}^{\infty} { u k } k = 0 ∞ is a Cauchy sequence in C [ − h , h ] C [ - h , h ] C [ − h , h ] . (Of course, the selected h h h must satisfy 0 < h < min ( b M , 1 K ) \displaystyle 0 < h < \min \left( {{b} \over {M}} , {{1} \over {K}} \right) 0 < h < min ( M b , K 1 ) .)
Part 4. Banach Space
Since C [ − h , h ] C [ -h , h ] C [ − h , h ] is a Banach space, u ( t ) : = lim k → ∞ u k ( t ) \displaystyle \mathbf{u} (t) := \lim_{k \to \infty} \mathbf{u}_{k} (t) u ( t ) := k → ∞ lim u k ( t ) is a continuous function. As u \mathbf{u} u is continuous, so is ( f ∘ u ) ( f \circ \mathbf{u} ) ( f ∘ u ) , and by the fundamental theorem of calculus,
u ˙ ( t ) = ( ϕ 0 + ∫ 0 t f ( u ( s ) ) d s ) ′ = f ( u ( t ) )
\dot{\mathbf{u} } (t) = \left( \phi_{0} + \int_{0}^{t} f \left( u(s) \right) ds \right)' = f \left( \mathbf{u} (t) \right)
u ˙ ( t ) = ( ϕ 0 + ∫ 0 t f ( u ( s ) ) d s ) ′ = f ( u ( t ) )
Also, if t = 0 t = 0 t = 0 then u ( 0 ) = ϕ 0 + ∫ 0 0 f ( u ( s ) ) d s = ϕ 0 + 0 = ϕ 0 \displaystyle \mathbf{u} (0) = \phi_{0} + \int_{0}^{0} f \left( u(s) \right) ds = \phi_{0} + 0 = \phi_{0} u ( 0 ) = ϕ 0 + ∫ 0 0 f ( u ( s ) ) d s = ϕ 0 + 0 = ϕ 0 Hence, u \mathbf{u} u exists as a solution to the given initial value problem for all t ∈ [ − h , h ] t \in [ - h , h ] t ∈ [ − h , h ] .
Part 5. Uniqueness
Assuming u \mathbf{u} u and v \mathbf{v} v are solutions to the given initial value problem. If ∣ u ( t ) − v ( t ) ∣ | \mathbf{u} (t) - \mathbf{v} (t) | ∣ u ( t ) − v ( t ) ∣ maximizes the value for some t t t , let it be t 0 ∈ [ − h , h ] t_{0} \in [-h , h] t 0 ∈ [ − h , h ] ,
∥ u − v ∥ = sup t ∈ [ − h , h ] ∣ u ( t ) − v ( t ) ∣ = ∣ ∫ 0 t 0 [ f ( u ( s ) ) − f ( v ( s ) ) ] d s ∣ ≤ ∫ 0 t 0 ∣ f ( u ( s ) ) − f ( v ( s ) ) ∣ d s ≤ K ∫ 0 t 0 ∣ u ( s ) − v ( s ) ∣ d s ≤ K h sup s ∈ [ − h , h ] ∣ u ( s ) − v ( s ) ∣ ≤ K h ∥ u − v ∥
\begin{align*}
\| \mathbf{u} - \mathbf{v} \| =& \sup_{t \in [-h,h ] } | \mathbf{u} (t) - \mathbf{v} (t) |
\\ =& \left| \int_{0}^{t_{0} } \left[ f \left( \mathbf{u} (s) \right) - f \left( \mathbf{v} (s) \right) \right] ds \right|
\\ \le & \int_{0}^{t_{0} } \left| f \left( \mathbf{u} (s) \right) - f \left( \mathbf{v} (s) \right) \right| ds
\\ \le & K \int_{0}^{t_{0} } \left|\mathbf{u} (s) - \mathbf{v} (s) \right| ds
\\ \le & K h \sup_{s \in [-h, h ] } \left| \mathbf{u} (s) - \mathbf{v} (s) \right|
\\ \le & K h \| \mathbf{u} - \mathbf{v} \|
\end{align*}
∥ u − v ∥ = = ≤ ≤ ≤ ≤ t ∈ [ − h , h ] sup ∣ u ( t ) − v ( t ) ∣ ∫ 0 t 0 [ f ( u ( s ) ) − f ( v ( s ) ) ] d s ∫ 0 t 0 ∣ f ( u ( s ) ) − f ( v ( s ) ) ∣ d s K ∫ 0 t 0 ∣ u ( s ) − v ( s ) ∣ d s K h s ∈ [ − h , h ] sup ∣ u ( s ) − v ( s ) ∣ K h ∥ u − v ∥
In summary, since ∥ u − v ∥ ≤ K h ∥ u − v ∥ \| \mathbf{u} - \mathbf{v} \| \le K h \| \mathbf{u} - \mathbf{v} \| ∥ u − v ∥ ≤ K h ∥ u − v ∥ and because of K h < 1 Kh < 1 K h < 1 , it must be ∥ u − v ∥ = 0 \| \mathbf{u} - \mathbf{v} \| = 0 ∥ u − v ∥ = 0 . Therefore, in [ − h , h ] [-h, h ] [ − h , h ] , it must be ∥ u ∥ = ∥ v ∥ \| \mathbf{u} \| = \| \mathbf{v} \| ∥ u ∥ = ∥ v ∥ .
■