logo

Parabolic Motion: Horizontal Range and Maximum Height Angle 📂Classical Mechanics

Parabolic Motion: Horizontal Range and Maximum Height Angle

Definition1 2

59043BEE1.jpg

An object launched with angle α\alpha and initial speed v0v_{0} performs a motion known as parabolic motion.

Description

It’s also referred to as projectile motion.

Typically, external forces like air resistance are ignored, so the motion is uniform in the horizontal direction and free fall in the vertical direction.

Analysis

Motion in the xx direction (horizontal) is independent of gravity, while motion in the yy direction (vertical) is affected by gravity.

x=(vocosα)ty=12gt2+(v0sinα)tvx=v0cosαvy=gt+v0sinαax=0ay=gFx=0Fy=mg \begin{align*} x &= (v_o\cos\alpha)t && & y &= -\frac{1}{2}gt^{2}+(v_{0}\sin\alpha)t \\ v_{x} &= v_{0}\cos\alpha && & v_{y} &= -gt+v_{0}\sin\alpha \\ a_{x} &= 0 && & a_{y} &= -g \\ F_{x} &= 0 && & F_{y} &= -mg \end{align*}

Let’s take two equations concerning positions in vertical and horizontal directions.

x=(v0cosα)ty=12gt2+(v0sinα)t \begin{align} x &= (v_{0}\cos\alpha)t \\ y &= -\frac{1}{2}gt^{2}+(v_{0}\sin\alpha)t \end{align}

By arranging for the commonly included tt, we get an equation purely in terms of x,y,αx, y, \alpha. In other words, we can know information about the horizontal distance and vertical height of the parabolic motion as per the angle. Arranging (1)(1) in terms of tt gives us t=xv0cosαt=\dfrac{x}{v_{0}\cos\alpha}, and by substituting in (2)(2) and arranging it as a quadratic equation regarding xx,

y=12g(xv0cosα)2+(v0sinα)(xv0cosα)=g2v02cos2αx2+(sinαcosα)x=g2v02cos2α(x22v02sinαcosαgx)=g2v02cos2α(x22v02sinαcosαgx+v04sin2αcos2αg2)+v02sin2α2g=g2v02cos2α(xv02sinαcosαg)2+v02sin2α2g \begin{align} y &= -\frac{1}{2}g\left(\frac{x}{v_{0}\cos\alpha}\right)^{2}+(v_{0}\sin\alpha)\left(\frac{x}{v_{0}\cos\alpha}\right) \nonumber \\ &= -\frac{g}{2{v_{0}}^{2}\cos^{2}\alpha}x^{2}+\left(\frac{\sin\alpha}{\cos\alpha}\right)x \nonumber \\ &= -\frac{g}{2{v_{0}}^{2}\cos^{2}\alpha}\left(x^{2}-\frac{2{v_{0}}^{2}\sin\alpha \cos\alpha}{g}x\right) \\ &= -\frac{g}{2{v_{0}}^{2}\cos^{2}\alpha}\left(x^{2}-\frac{2{v_{0}}^{2}\sin\alpha \cos\alpha}{g}x+\frac{{v_{0}}^4\sin^{2}\alpha \cos^{2}\alpha}{g^{2}}\right) +\frac{{v_{0}}^{2}\sin^{2}\alpha}{2g} \nonumber \\ &= -\frac{g}{2{v_{0}}^{2}\cos ^{2}\alpha}\left(x-\frac{{v_{0}}^{2}\sin\alpha \cos\alpha}{g}\right)^{2} +\frac{{v_{0}}^{2}\sin^{2}\alpha}{2g} \nonumber \end{align}

Maximum Height

59043BFF3.jpg

From the above equation, we can easily see that the vertex of the parabolic motion graph is at (v02sinαcosαg,v02sin2α2g)\left(\dfrac{{v_{0}}^{2}\sin\alpha \cos\alpha}{g}, \dfrac{{v_{0}}^{2}\sin^{2}\alpha}{2g} \right). Therefore, based on the launch angle α\alpha and initial speed v0v_{0}, the maximum height is

y=v02sin2α2g y = \dfrac{{v_{0}}^{2}\sin^{2}\alpha}{2g}

When the angle for the maximum height is (?) at α=90=π2\alpha = 90^{\circ} = \frac{\pi}{2},

y=v022g y = \dfrac{v_{0}^{2}}{2g}

Horizontal Range

A root other than 00 of the parabolic motion graph is the horizontal range. Based on the (3)(3) formula,

g2v02cos2α(x22v02sinαcosαgx)=g2v02cos2αx(x2v02sinαcosαg) \frac{g}{2{v_{0}}^{2}\cos^{2}\alpha}\left(x^{2}-\frac{2{v_{0}}^{2}\sin\alpha \cos\alpha}{g}x\right) = \frac{g}{2{v_{0}}^{2}\cos^{2}\alpha} x \left(x-\frac{2{v_{0}}^{2}\sin\alpha \cos\alpha}{g}\right)

Hence, the horizontal range can be described as follows.

x=2v02sinαcosαg=v02sin2αg \begin{equation} x = \dfrac{2{v_{0}}^{2}\sin\alpha \cos\alpha}{g} = \dfrac{{v_{0}}^{2}\sin2\alpha}{g} \end{equation}

Let’s take the two equations we arranged regarding xx and yy. Both equations include time tt. Our question does not concern time. In other words, by arranging one equation for tt and substituting it into the other, we can answer the question we were interested in.

Flight Time

If we regard the reach distance as R=v02sin2αgR = \dfrac{{v_{0}}^{2}\sin2\alpha}{g}, then

t=v02sin2αgv0cosα=Rv0cosα t = \dfrac{{v_{0}}^{2}\sin2\alpha}{g v_{0}\cos\alpha} = \dfrac{R}{v_{0}\cos\alpha}

Vertical Motion

If α=90=π2\alpha = 90^{\circ} = \frac{\pi}{2}, it describes an object moving in vertical direction.

  • Horizontal Range: x=v02sinπg=0x = \dfrac{{v_{0}}^{2}\sin \pi}{g} = 0

  • Vertical Height: y=v022gy = \dfrac{v_{0}^{2}}{2g}

  • Flight Time: t=v0gt = \dfrac{v_{0}}{g}

Also, an object falling from the maximum height undergoes [free fall].


  1. Grant R. Fowles and George L. Cassiday, Analytical Mechanics (7th Edition, 2005), p33-34 ↩︎

  2. Wolfgang Bauer and Gary D. Westfall, University Physics with Modern Physics (1st Edition, 2011), p76-86 ↩︎