logo

Proof that Differentiating the Heaviside Step Function Yields the Dirac Delta Function 📂Mathematical Physics

Proof that Differentiating the Heaviside Step Function Yields the Dirac Delta Function

Theorem

The derivative of the Heaviside step function is the Dirac delta function.

dHdx=δ(x) \dfrac{dH}{dx}=\delta (x)

Here, H=H(x)H=H(x) refers to the Heaviside step function or unit step function

H(x)={1x>00x0 H(x)=\begin{cases} 1 & x>0 \\ 0 & x \le 0 \end{cases}

Dirac Delta Function

A function that satisfies the following two conditions is called the Dirac delta function.

δ(x)={0,x0,x=0 \begin{equation} \delta (x) = \begin{cases} 0, & x\neq 0 \\ \infty , & x=0 \end{cases} \label{condition1} \end{equation}

δ(x)dx=1 \begin{equation} \int_{-\infty}^{\infty}{\delta (x) dx}=1 \label{condition2} \end{equation}

Proof

We prove dHdx\dfrac{dH}{dx} is the Dirac delta function by checking if it satisfies the two required conditions.

Condition (condition1)\eqref{condition1}

Since H(x)H(x) is a constant function in x0x \neq 0, it is dHdx=0\dfrac{dH}{dx}=0, and in x=0x=0, the tangent line is a vertical line parallel to the yy axis, the derivative diverges to dHdx=\dfrac{dH}{dx}=\infty. Therefore, dHdx={x=00x0 \dfrac{dH}{dx} = \begin{cases} \infty & x=0 \\ 0 & x \neq 0 \end{cases}

Condition (condition2)\eqref{condition2}

dHdxdx=dH=[H]=10=1 \begin{align*} \int _{-\infty} ^{\infty} \dfrac{dH}{dx} dx &= \int_{-\infty} ^{\infty} dH \\ &= \left[ H \right]_{-\infty}^{\infty} \\ &= 1-0 =1 \end{align*}

Since dHdx\dfrac{dH}{dx} satisfies both conditions required for the Dirac delta function, we obtain the following result.

dHdx=δ(x) \dfrac{dH}{dx}=\delta (x)