logo

Series Expansion of the Arctangent Function 📂Calculus

Series Expansion of the Arctangent Function

Theorem1

tan1x=n=0(1)nx2n+12n+1 \tan ^{ -1 } x = \sum _{ n=0 }^{ \infty }{ \frac { (-1) ^{ n } { x } ^ { 2n+1 } } { 2n+1 } }

Description

Whether it is written as arctan\arctan or as tan1\tan ^{-1} does not matter. Among the several inverse trigonometric functions, arctan is particularly interesting because it provides a series that converges to π\pi. When x=1x=1 is substituted,

π4=tan11=113+1517+ { \pi \over 4 } = \tan ^{-1} 1 = 1 - {1 \over 3} + {1 \over 5} - {1 \over 7} + \cdots

Multiplying both sides by 44 gives an infinite series that converges to π\pi.

π=4(113+1517+) \pi = 4 \left( 1 - {1 \over 3} + {1 \over 5} - {1 \over 7} + \cdots \right)

Calculating Pi

Although the series expansion of arctan has no direct relationship, it shares aspects with calculating pi π\pi through series. Newton made significant contributions in this regard.

Proof

From 1<t<1-1<t<1,

11t=n=0tn    11+t2=n=0(t2)n=n=0(1)nt2n \frac { 1 }{ 1-t }=\sum _{ n=0 }^{ \infty }{ { t ^ n } } \implies \frac { 1 }{ 1+{ t ^ 2 } }=\sum _{ n=0 }^{ \infty }{ { \left( -{ t ^ 2 } \right) } ^{ n } }=\sum _{ n=0 }^{ \infty }{ { (-1) ^ { n } }{ t ^ {2n} } }

Hence,

tan1x=0x11+t2dt=0xn=0(1)nt2ndt=[n=0(1)nt2n+12n+1]0x=n=0(1)nx2n+12n+1 \begin{align*} \tan^{ -1 }x =& \int _{ 0 }^{ x }{ \frac { 1 }{ 1+{ t ^ 2 } } }dt \\ =& \int _{ 0 }^{ x }{ \sum _{ n=0 }^{ \infty }{ { (-1) ^ { n } }{ t ^ {2n} } } }dt \\ =& { \left[ \sum _{ n=0 }^{ \infty }{ \frac { { (-1) ^ { n } }{ t ^ {2n+1} } }{ 2n+1 } } \right] }_{ 0 }^{ x } \\ =& \sum _{ n=0 }^{ \infty }{ \frac { { (-1) ^ { n } }{ x ^ {2n+1} } }{ 2n+1 } } \end{align*}


  1. James Stewart, Daniel Clegg, and Saleem Watson, Calculus (early transcendentals, 9E), p790 ↩︎