logo

Hilbert Spaces are Reflexive: A Proof 📂Hilbert Space

Hilbert Spaces are Reflexive: A Proof

Theorem

Hilbert Space HH is reflexive: HH H^{\ast \ast} \approx H


  • XX^{\ast} is the dual space of XX, and XX^{\ast \ast} represents the double dual.
  • XYX \approx Y means that XX and YY are isometric.

Description

Although it is brief and straightforward, the fact that there is no need to consider anything larger than the dual space when studying Hilbert spaces is very good.

Proof

  • Part 1. (H,)(H^{ \ast } , \| \cdot \| ) is a Hilbert space

    Riesz Representation Theorem: Let’s assume HH is a Hilbert space. For linear functionals fHf \in H^{ \ast } and xH\mathbf{x} \in H of HH, there exists a unique yH\mathbf{y} \in H that satisfies f(x)=x,yf ( \mathbf{x} ) = \left\langle \mathbf{x} , \mathbf{y} \right\rangle and f=y\| f \| = \| \mathbf{y} \|.

    Let’s define the function ,:H×HC\left\langle \cdot , \cdot \right\rangle^{ \ast } : H^{ \ast } \times H^{ \ast } \to \mathbb{C} as f,g:=yg,yf=f(yg)\displaystyle \left\langle f, g \right\rangle^{ \ast } : = \left\langle \mathbf{y}_{g}, \mathbf{y}_{f} \right\rangle = f ( \mathbf{y}_{g} ), where yf,ygH\mathbf{y}_{f}, \mathbf{y}_{g} \in H are the elements satisfying f=yf\| f \| = \| \mathbf{y}_{f} \| and g=yg\| g \| = \| \mathbf{y}_{g} \| from the Riesz Representation Theorem.

    Then, ,\left\langle \cdot , \cdot \right\rangle^{ \ast } satisfies the following three conditions, making it the inner product of HH^{ \ast }:

    (i): λf1+f2,g=(λf1+f2)(yg)=λf1(yg)+f2(yg)=λf1,g+f2,g\left\langle \lambda f_{1} + f_{2} , g \right\rangle^{ \ast } = ( \lambda f_{1} + f_{2} ) ( \mathbf{y}_{g} )= \lambda f_{1}( \mathbf{y}_{g} ) + f_{2} ( \mathbf{y}_{g} ) = \lambda \left\langle f_{1}, g \right\rangle^{ \ast } + \left\langle f_{2}, g \right\rangle^{ \ast }

    (ii): f,g=yg,yf=yf,yg=g,f\left\langle f , g \right\rangle^{ \ast } = \left\langle \mathbf{y}_{g} , \mathbf{y}_{f} \right\rangle = \overline{ \left\langle \mathbf{y}_{f} , \mathbf{y}_{g} \right\rangle } = \overline{ \left\langle g , f \right\rangle^{ \ast } }

    (iii): f,f=yf,yf=yf20\left\langle f , f \right\rangle^{ \ast } = \left\langle \mathbf{y}_{f}, \mathbf{y}_{f} \right\rangle = \| \mathbf{y}_{f} \|^{2} \ge 0 and f,f=yf2=0    yf=0    f=0\left\langle f , f \right\rangle^{ \ast } = \| \mathbf{y}_{f} \|^{2} = 0 \iff \mathbf{y}_{f} = 0 \iff f = 0

    Properties of Linear Operators: If YY is a Banach space, then (B(X,Y),)(B(X,Y), \left\| \cdot \right\| ) is a Banach space.

    Since Y=CY=\mathbb{C} is a Banach space, (B(X,Y),)=(H,)(B(X,Y), \left\| \cdot \right\|) = (H^{\ast}, \left\| \cdot \right\|) is also a Banach space. HH^{\ast} being a complete space with an inner product defined makes it a Hilbert space.

  • Part 2.

    Let’s define the function Φ\Phi. Let’s define Φ:HH\Phi : H \to H^{\ast \ast} as Φ(x):=ϕx(f)=f(x)\Phi (\mathbf{x}) := \phi_{\mathbf{x}} (f) = f(\mathbf{x}) using the function ϕxH\phi_{\mathbf{x}} \in H^{\ast \ast}, which substitutes xH\mathbf{x} \in H into fHf \in H^{ \ast }.

  • Part 3. Φ\Phi is linear

    Since fHf \in H^{ \ast }, Φ(λx+y)=f(λx+y)=λf(x)+f(y)=λΦ(x)+Φ(y)\Phi ( \lambda \mathbf{x} + y) = f ( \lambda \mathbf{x} + y) = \lambda f ( \mathbf{x} ) + f ( y) = \lambda \Phi ( \mathbf{x} ) + \Phi ( y)

  • Part 4. Φ\Phi is injective

    If we say that xkerΦ\mathbf{x} \in \ker \Phi, then 0=Φ(x)=f(x)\mathbb{0} = \Phi (\mathbf{x}) = f(\mathbf{x}) hence xkerf\mathbf{x} \in \ker fTaking the substitution function from the Riesz Representation Theorem, we get ϕx(f)=f(x)=x,yf=0\phi_x (f) = f(\mathbf{x}) = \left\langle \mathbf{x} , \mathbf{y}_{f} \right\rangle = \mathbb{0} This must be true regardless of yf\mathbf{y}_{f}, so x=0\mathbf{x} = \mathbb{0} must be true.

    Properties of Kernel: kerΦ={0}    Φ\ker \Phi = \left\{ \mathbb{0} \right\} \iff \Phi is injective.

    Since kerΦ={0}\ker \Phi = \left\{ \mathbb{0} \right\}, by the properties of the kernel, Φ\Phi is injective.

  • Part 5. Φ\Phi is surjective.

    As already shown in Part 1. that HH^{ \ast } is a Hilbert space, we can use the Riesz Representation Theorem.

    • Part 5-1.

      For FH(F:HC)F \in H^{\ast \ast} ( F : H^{\ast \ast} \to \mathbb{C}), there uniquely exists gFHg_{F} \in H^{ \ast } that satisfies F()=,gFF( \cdot ) = \left\langle \cdot , g_{F} \right\rangle^{ \ast } and F=gF\| F \| = \| g_{F} \|.

    • Part 5-2.

      For gFH(gF:HC)g_{F} \in H^{ \ast } ( g_{F} : H^{ \ast } \to \mathbb{C}), there uniquely exists xgFH\mathbf{x}_{g_{F}} \in H that satisfies gF()=,xgFg_{F} ( \cdot ) = \left\langle \cdot , \mathbf{x}_{g_{F}} \right\rangle and gF=xgF \| g_{F} \| = \| \mathbf{x}_{g_{F}} \| .

      F(f)=f,gFby Part 5-1.=f,gFby definition of ,=xgF,yfby definition of ,=f(xgF)by Riesz Representation Theorem=Φ(xgF)by definition of Φ \begin{align*} F(f) =& \left\langle f , g_{F} \right\rangle^{ \ast } & \text{by Part 5-1.} \\ =& \left\langle f , g_{F} \right\rangle^{ \ast } &\text{by definition of } \left\langle \cdot , \cdot \right\rangle^{ \ast } \\ =& \left\langle \mathbf{x}_{g_{F}} , \mathbf{y}_{f} \right\rangle^{ \ast } &\text{by definition of }\left\langle \cdot , \cdot \right\rangle \\ =& f \left( \mathbf{x}_{g_{F}} \right) & \text{by Riesz Representation Theorem} \\ =& \Phi ( \mathbf{x}_{g_{F}} ) &\text{by definition of } \Phi \end{align*}

    Therefore, for all F(f)HF(f) \in H^{\ast \ast}, there exists xgFH\mathbf{x}_{g_{F}} \in H that satisfies Φ(xgF)=F(f)\Phi ( \mathbf{x}_{g_{F}} ) = F(f), making Φ\Phi surjective.

  • Part 6. Φ\Phi preserves the norm.

    From the definition of Φ\Phi, because Φ(xgF)=ϕxgF(f)\Phi ( \mathbf{x}_{g_{F}} ) = \phi_{ \mathbf{x}_{g_{F}} } (f),

    Φ(xgF)=ϕxgF(f)=F(f) \Phi ( \mathbf{x}_{g_{F}} ) = \phi_{ \mathbf{x}_{g_{F}} } (f) = F(f)

    In other words,

    Φ(xgF)=ϕxgF=F \left\| \Phi ( \mathbf{x}_{g_{F}} ) \right\| = \left\| \phi_{ \mathbf{x}_{g_{F}} } \right\| = \left\| F \right\|

    But from Part 5-1., we had F=gF\| F \| = \| g_{F} \|, and from Part 5-2., we had gF=xgF\| g_{F} \| = \| \mathbf{x}_{g_{F}} \|,

    Φ(xgF)=xgF \left\| \Phi ( \mathbf{x}_{g_{F}} ) \right\| = \| \mathbf{x}_{g_{F}} \|

Summarizing from Part 2. to Part 6., we can see that Φ\Phi is isometric.