logo

Orthogonal Decomposition Theorem Proof 📂Hilbert Space

Orthogonal Decomposition Theorem Proof

Theorem1

Let (H,,)\left( H, \left\langle \cdot,\cdot \right\rangle \right) be a Hilbert space. Then for the closed subspace MM of HH,

H=MM H = M \oplus M^{\perp}

Corollary

(M)=M \left( M^{\perp} \right)^{\perp} = M

This fact can be demonstrated for (M):={xHx,m=0,mM}\left( M^{\perp} \right)^{\perp} := \left\{ \mathbf{x} \in H \mid \left\langle \mathbf{x} , \mathbf{m}^{\perp} \right\rangle = 0 , \mathbf{m}^{\perp} \in M^{\perp} \right\} as a corollary.

Explanation

M:={xHx,m=0,mM}M^{\perp } := \left\{ \mathbf{x} \in H \mid \left\langle \mathbf{x} , \mathbf{m} \right\rangle = 0 , \mathbf{m} \in M \right\} is called the orthogonal complement of MM. Being orthogonal is as useful a property as any. That Hilbert spaces guarantee this means they are indeed nice spaces.

On the other hand, since the proof involves the shortest vector theorem, it does not hold for inner spaces that are not Hilbert spaces.

Proof

Strategy: The proof simply shows the conditions to be represented as a direct sum.


If xM\mathbf{x} \in M, then since x=x+0\mathbf{x} = \mathbf{x} + \mathbb{0}, there’s nothing to prove. Hence, suppose xH\mathbf{x} \in H and xM\mathbf{x} \notin M. Then MHM \lneq H and since MM is a closed set, the shortest vector theorem can be applied.

Shortest Vector Theorem: Let HH be a Hilbert space. Suppose MHM \lneq H is a nonempty, closed, convex subset. Then for x(HM)\mathbf{x} \in ( H \setminus M)

δ:=xm0=infmMxm>0 \delta := \| \mathbf{x} - \mathbf{m}_{0} \| = \inf_{\mathbf{m} \in M} \| \mathbf{x} - \mathbf{m} \| > 0

there uniquely exists m0M\mathbf{m}_{0} \in M satisfying it.

Consider some mM\mathbf{m} \in M for which t:=xm0,mCt := \left\langle \mathbf{x} - \mathbf{m}_{0 } , \mathbf{m} \right\rangle \in \mathbb{C}.

  • Case 1. t=0t = 0

    Since xm0,m=t=0\left\langle \mathbf{x} - \mathbf{m}_{0 } , \mathbf{m} \right\rangle = t = 0, then (xm0)M( \mathbf{x} - \mathbf{m}_{0} ) \in M^{ \perp }.

  • Case 2. t0t \ne 0

    For all λC\lambda \in \mathbb{C},

    δ2x0(m0λm)2=(xm0)+λm,(xm0)+λm=xm02+λxm0,m+λm,xm0+λ2m2=xm02+λxm0,m+λxm0,m+λ2m2=xm02+λt+λt+λ2m2=δ2+2Re(λt)+λ2m2 \begin{align*} \delta^2 \le & \| \mathbf{x}_{0} - ( \mathbf{m}_{0} - \lambda \mathbf{m} ) \|^2 \\ =& \left\langle (\mathbf{x} - \mathbf{m}_{0}) + \lambda \mathbf{m} , (\mathbf{x} - \mathbf{m}_{0}) + \lambda \mathbf{m} \right\rangle \\ =& \| \mathbf{x} - \mathbf{m}_{0} \|^2 + \overline{ \lambda } \left\langle \mathbf{x} - \mathbf{m}_{0} , \mathbf{m} \right\rangle + \lambda \left\langle \mathbf{m} , \mathbf{x} - \mathbf{m}_{0} \right\rangle + | \lambda |^2 \| \mathbf{m} \|^2 \\ =& \| \mathbf{x} - \mathbf{m}_{0} \|^2 + \overline{ \lambda } \left\langle \mathbf{x} - \mathbf{m}_{0} , \mathbf{m} \right\rangle + \overline{ \overline{\lambda} \left\langle \mathbf{x} - \mathbf{m}_{0} , \mathbf{m} \right\rangle } + | \lambda |^2 \| \mathbf{m} \|^2 \\ =& \| \mathbf{x} - \mathbf{m}_{0} \|^2 + \overline{ \lambda } t + \overline{ \overline{\lambda} t } + | \lambda |^2 \| \mathbf{m} \|^2 \\ =& \delta^2 + 2 \operatorname{Re} ( \overline{ \lambda } t ) + | \lambda |^2 \| \mathbf{m} \|^2 \end{align*}

    Subtracting δ2\delta^2 from both sides yields

    02Re(λt)+λ2m2 0 \le 2 \operatorname{Re} ( \overline{ \lambda } t ) + | \lambda |^2 \| \mathbf{m} \|^2 .

    Here, Re(λt)\operatorname{Re} ( \overline{ \lambda } t ) denotes the real part of λt\overline{ \lambda } t.

    • Case 2-1. m=1\| \mathbf{m} \| = 1

      02Re(λt)+λ2 0 \le 2 \operatorname{Re} ( \overline{ \lambda } t ) + | \lambda |^2

      This inequality holds for all λC\lambda \in \mathbb{C}, so if we set λ=t\lambda = -t,

      02Re(tt)+t2=2t2+t2=t2 0 \le 2 \operatorname{Re} ( \overline{ -t } \cdot t ) + | t |^2 = - 2 | t |^2 + | t |^2 = -| t |^2

      That is, t=0|t| = 0, which should be t=0t = 0, contradicting the assumption of Case 2.

    • Case 2-2. m1\| \mathbf{m} \| \ne 1

      t=xm0,m=mxm0,mm=m0=0 \begin{align*} t =& \left\langle \mathbf{x} - \mathbf{m}_{0} , \mathbf{m} \right\rangle \\ =& \| \mathbf{m} \| \left\langle \mathbf{x} - \mathbf{m}_{0} , {{\mathbf{m}} \over { \| \mathbf{m} \| }} \right\rangle \\ =& \| \mathbf{m} \| \cdot 0 \\ =& 0 \end{align*}

      That is, again t=0t = 0, which also contradicts the assumption of Case 2.

Ultimately, by Case 1., it has to be t=0t = 0. This means that for the m0M\mathbf{m}_{0} \in M whose existence is guaranteed by the shortest vector theorem, (xm0)M(\mathbf{x} - \mathbf{m}_{0}) \in M^{\perp} is true. Hence, any xH\mathbf{x} \in H can be represented as follows.

x=m0+(xm0)M+M \mathbf{x} = \mathbf{m}_{0} + (\mathbf{x} - \mathbf{m}_{0}) \in M + M^{ \perp }

To demonstrate uniqueness, consider m1,m2M\mathbf{m}_{1} , \mathbf{m}_{2} \in M and z1,z2Mz_{1} , z_{2} \in M^{\perp} and set

x=m1+z1=m2+z2 \mathbf{x} = \mathbf{m}_{1} + z_{1} = \mathbf{m}_{2} + z_{2}

Then,

m1m2=z2z1(MM)={0} \mathbf{m}_{1} - \mathbf{m}_{2} = z_{2} - z_{1} \in \left( M \cap M^{\perp} \right) = \left\{ \mathbb{0} \right\}

In other words,

m1m2=0    m1=m2    z2=z1 \mathbf{m}_{1} - \mathbf{m}_{2} = \mathbb{0} \implies \mathbf{m}_{1} = \mathbf{m}_{2} \implies z_{2} = z_{1}

And, the method to represent x\mathbf{x} is unique.

Corollary

  • ()( \subset )

    If y(M)y \in \left( M^{\perp} \right)^{\perp}, then y,m=0\left\langle y , \mathbf{m}^{\perp} \right\rangle = 0, and either y=0y = \mathbb{0} or yMy \notin M^{\perp}. However, by the orthogonal decomposition theorem, since H=MMH = M \oplus M^{\perp}, it must be yMy \in M,

    (M)M \left( M^{\perp} \right)^{\perp} \subset M

  • ()( \supset )

    If mM\mathbf{m} \in M, then m,m=0\left\langle \mathbf{m} , \mathbf{m}^{\perp} \right\rangle = 0, and since m(M)\mathbf{m} \in \left( M^{\perp} \right)^{\perp},

    M(M) M \subset \left( M^{\perp} \right)^{\perp}


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p68-69 ↩︎