logo

Proof of the Shortest Vector Theorem 📂Hilbert Space

Proof of the Shortest Vector Theorem

Theorem1

Let (H,,)\left( H, \left\langle \cdot,\cdot \right\rangle \right) be a Hilbert space. Let MHM \lneq H be a non-empty closed convex subset. Then, for x(HM)\mathbf{x} \in ( H \setminus M),

δ:=xm0=infmMxm>0 \delta := \| \mathbf{x} - \mathbf{m}_{0} \| = \inf_{\mathbf{m} \in M} \| \mathbf{x} - \mathbf{m} \| > 0

there exists a unique m0M\mathbf{m}_{0} \in M that satisfies this.

Explanation

The fact that subspace MM is convex means for all x,yM\mathbf{x},y \in M and λ[0,1]\lambda \in [0,1] the following holds true.

λx+(1λ)yM \lambda \mathbf{x} + (1-\lambda) y \in M

It might seem trivial, but upon closer inspection, it’s not necessarily obvious since there’s no reason in a general topological space for m0\mathbf{m}_{0} to be unique.

20181119\_041823.png

Simplifying the concept as shown above, the right subspace MM is quite straightforward, which is why this theorem holds.

On the other hand, as can be seen from the proof, this does not hold for inner spaces that are not Hilbert spaces.

Proof

  • Part 1. δ>0\delta >0

    Assuming δ=0\delta = 0,

    limkxmk=δ=0 \lim_{k \to \infty } \| \mathbf{x} - \mathbf{m}_{k} \| = \delta = 0

    there exists a sequence {mk}kN\left\{ \mathbf{m}_{k} \right\}_{k \in \mathbb{N}} that satisfies this condition. This means when kk \to \infty, mkxM=M\mathbf{m}_{k} \to \mathbf{x} \in \overline{M} = M, which contradicts x(HM)\mathbf{x} \in ( H \setminus M).

  • Part 2. Existence

    Due to the parallelogram law,

    mkmj2=(xmk)(xmj)2=2xmk2+2xmj2(xmk)+(xmj)2=2xmk2+2xmj24xmk+mj222xmk2+2xmj24δ2 \begin{align*} \| \mathbf{m}_{k} - \mathbf{m}_{j} \|^2 &= \| ( \mathbf{x} - \mathbf{m}_{k} ) - ( \mathbf{x} - \mathbf{m}_{j} ) \|^2 \\ =& 2 \| \mathbf{x} - \mathbf{m}_{k} \|^2 + 2 \| \mathbf{x} - \mathbf{m}_{j} \|^2 - \| ( \mathbf{x} - \mathbf{m}_{k} ) + ( \mathbf{x} - \mathbf{m}_{j} ) \|^2 \\ =& 2 \| \mathbf{x} - \mathbf{m}_{k} \|^2 + 2 \| \mathbf{x} - \mathbf{m}_{j} \|^2 - 4 \left\| \mathbf{x} - {{ \mathbf{m}_{k} + \mathbf{m}_{j} } \over {2}} \right\|^2 \\ \le & 2 \| \mathbf{x} - \mathbf{m}_{k} \|^2 + 2 \| \mathbf{x} - \mathbf{m}_{j} \|^2 - 4 \delta^2 \end{align*}

    Hence, when k,jk,j \to \infty,

    mkmj24δ24δ2 \| \mathbf{m}_{k} - \mathbf{m}_{j} \|^2 \to 4 \delta^2 - 4 \delta^2

    {mk}kN\left\{ \mathbf{m}_{k} \right\}_{k \in \mathbb{N}} is a Cauchy sequence. Therefore, since HH is a Hilbert space, there exists m0H\mathbf{m}_{0} \in H such that mkm0\mathbf{m}_{k} \to \mathbf{m}_{0}.

    mkm0M=M \mathbf{m}_{k} \to \mathbf{m}_{0} \in \overline{M} = M

    Since the norm is a continuous function,

    xm0=xlimkmk=limkxmk=δ \| \mathbf{x} - \mathbf{m}_{0} \| = \left\| \mathbf{x} - \lim_{k \to \infty} \mathbf{m}_{k} \right\| = \lim_{k \to \infty} \left\| \mathbf{x} - \mathbf{m}_{k} \right\| = \delta

  • Part 3. Uniqueness

    Assuming that there exists m0M\mathbf{m}_{0} ' \in M such that xm0=δ\| \mathbf{x} - \mathbf{m}_{0} ' \| = \delta,

    m0m02m0mk2+2m0mj24δ2=4δ24δ2=0 \| \mathbf{m}_{0} - \mathbf{m}_{0} ' \| \le 2 \| \mathbf{m}_{0} - \mathbf{m}_{k} \|^2 + 2 \| \mathbf{m}_{0}’ - \mathbf{m}_{j} \|^2 - 4 \delta^2 = 4 \delta^2 - 4 \delta^2 = 0

    Hence m0=m0\mathbf{m}_{0} = \mathbf{m}_{0} ' must hold.


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p67-68 ↩︎