Laplace Transform of the Dirac Delta Function
📂Odinary Differential EquationsLaplace Transform of the Dirac Delta Function
Theorem
The Laplace Transform of the Dirac Delta Function is as follows.
L{δ(t−t0)}=e−st0
Proof

Let’s define as shown in the picture above dτ(t)=2τ1 −τ≤t≤τ. Then, the limit below is the same as the Dirac Delta Function.
τ→0+limdτ(t)=δ(t)τ→0+limdτ(t−t0)=δ(t−t0)
Thus L{δ(t−t0)}=L{τ→0+limdτ(t−t0)}. Therefore,
∫0∞e−stδ(t−t0)dt=τ→0+lim∫0∞e−stdτ(t−t0)dt=τ→0+lim∫0∞e−stdτ(t−t0)dt=τ→0+lim∫t0−τt0+τe−stdτ(t−t0)dt=τ→0+lim∫t0−τt0+τe−st2τ1dt=τ→0+lim2τ1s−1[e−st]t0−τt0+τ=τ→0+lim2sτ1(e−s(t0−τ)−e−s(t0+τ))=τ→0+lim2sτ1e−st0(esτ−e−sτ)=τ→0+lime−st0sτ12esτ−e−sτ=τ→0+lime−st0sτ1sinh(sτ)
By the L’Hospital’s Rule,
τ→0+limsτsinh(sτ)=τ→0+limsscosh(sτ)=1
Therefore,
∫0∞e−stδ(t−t0)dt=e−st0
■
See Also