Inverse Laplace Transform of F(as+b)
공식1
Assuming that the Laplace transform $\mathcal{L} \left\{ f(t) \right\}= \displaystyle \int _{0} ^\infty e^{-st}f(t)dt =F(s)$ of function $f(t)$ exists as $s>\alpha \ge 0$, the inverse Laplace transform of $F(as+b)$ for constant $a>0 , b$ is as follows.
$$ \mathcal{L^{-1}} \left\{ F(as+b) \right\} =\frac{1}{a}e^{-\frac{b}{a}t}f\left(\frac{t}{a}\right) $$
Derivation
1
- Inverse Laplace transform of $F(ks)$: $$ \mathcal{L^{-1}} \left\{ F(ks) \right\} =\dfrac{1}{k}f\left(\frac{t}{k}\right) $$
- Translation of Laplace transform: $$ \mathcal{L^{-1}} \left\{ F(s-c) \right\}=e^{ct}f(t) $$
From 1., the following is obtained.
$$ \mathcal{L^{-1}} \left\{ F(as) \right\} =\frac{1}{a}f\left(\frac{t}{a}\right) $$
To derive $F(as+b)$ from $F(as)$, it is sufficient if $s$ $\to$ $s+\frac{b}{a}$. That is, $F$ needs to be translated by $-\frac{b}{a}$ towards the $s$ direction. By 2., the translated $F$ is found as
$$ \begin{align*} && \mathcal{L^{-1}} \left\{ F\left( a(s+\frac{b}{a}) \right) \right\} &= \frac{1}{a} e^{-\frac{b}{a}t}f\left(\frac{t}{a}\right) \\ \implies && \mathcal{L^{-1}} \left\{ F( as+b) \right\} &= \frac{1}{a} e^{-\frac{b}{a}t}f\left(\frac{t}{a}\right) \end{align*} $$
■
2
By the definition of Laplace transform,
$$ \begin{align*} \mathcal{L} \left\{ \frac{1}{a} e^{-\frac{b}{a}t} f\left( \frac{t}{a} \right) \right\} &= \dfrac{1}{a}\int _{0} ^\infty e^{-st}e^{-\frac{b}{a}t}f \left( \frac{t}{a} \right) dt \\ &= \dfrac{1}{a}\int _{0} ^\infty e^{-\left(s+\frac{b}{a}\right)t}f \left( \frac{t}{a} \right) dt \end{align*} $$
Let’s denote it as $\dfrac{t}{a}=\tau$. Then, $\left(s+\frac{b}{a}\right)t=(as+b)\tau$ and, because $dt=ad\tau$,
$$ \begin{align*} \mathcal{L} \left\{ \frac{1}{a} e^{-\frac{b}{a}t} f\left( \frac{t}{a} \right) \right\} &= \dfrac{1}{a}\int _{0} ^\infty e^{-\left(s+\frac{b}{a}\right)t}f \left( \frac{t}{a} \right) dt \\ &= \int _{0} ^\infty e^ {-(as+b)\tau}f (\tau) d\tau \\ &= F(as+b) \end{align*} $$
■
See also
William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p263 ↩︎