logo

Inverse Laplace Transform of F(as+b) 📂Odinary Differential Equations

Inverse Laplace Transform of F(as+b)

공식1

Assuming that the Laplace transform L{f(t)}=0estf(t)dt=F(s)\mathcal{L} \left\{ f(t) \right\}= \displaystyle \int _{0} ^\infty e^{-st}f(t)dt =F(s) of function f(t)f(t) exists as s>α0s>\alpha \ge 0, the inverse Laplace transform of F(as+b)F(as+b) for constant a>0,ba>0 , b is as follows.

L1{F(as+b)}=1aebatf(ta) \mathcal{L^{-1}} \left\{ F(as+b) \right\} =\frac{1}{a}e^{-\frac{b}{a}t}f\left(\frac{t}{a}\right)

Derivation

1

  1. Inverse Laplace transform of F(ks)F(ks): L1{F(ks)}=1kf(tk) \mathcal{L^{-1}} \left\{ F(ks) \right\} =\dfrac{1}{k}f\left(\frac{t}{k}\right)
  2. Translation of Laplace transform: L1{F(sc)}=ectf(t) \mathcal{L^{-1}} \left\{ F(s-c) \right\}=e^{ct}f(t)

From 1., the following is obtained.

L1{F(as)}=1af(ta) \mathcal{L^{-1}} \left\{ F(as) \right\} =\frac{1}{a}f\left(\frac{t}{a}\right)

To derive F(as+b)F(as+b) from F(as)F(as), it is sufficient if ss \to s+bas+\frac{b}{a}. That is, FF needs to be translated by ba-\frac{b}{a} towards the ss direction. By 2., the translated FF is found as

L1{F(a(s+ba))}=1aebatf(ta)    L1{F(as+b)}=1aebatf(ta) \begin{align*} && \mathcal{L^{-1}} \left\{ F\left( a(s+\frac{b}{a}) \right) \right\} &= \frac{1}{a} e^{-\frac{b}{a}t}f\left(\frac{t}{a}\right) \\ \implies && \mathcal{L^{-1}} \left\{ F( as+b) \right\} &= \frac{1}{a} e^{-\frac{b}{a}t}f\left(\frac{t}{a}\right) \end{align*}


2

By the definition of Laplace transform,

L{1aebatf(ta)}=1a0estebatf(ta)dt=1a0e(s+ba)tf(ta)dt \begin{align*} \mathcal{L} \left\{ \frac{1}{a} e^{-\frac{b}{a}t} f\left( \frac{t}{a} \right) \right\} &= \dfrac{1}{a}\int _{0} ^\infty e^{-st}e^{-\frac{b}{a}t}f \left( \frac{t}{a} \right) dt \\ &= \dfrac{1}{a}\int _{0} ^\infty e^{-\left(s+\frac{b}{a}\right)t}f \left( \frac{t}{a} \right) dt \end{align*}

Let’s denote it as ta=τ\dfrac{t}{a}=\tau. Then, (s+ba)t=(as+b)τ\left(s+\frac{b}{a}\right)t=(as+b)\tau and, because dt=adτdt=ad\tau,

L{1aebatf(ta)}=1a0e(s+ba)tf(ta)dt=0e(as+b)τf(τ)dτ=F(as+b) \begin{align*} \mathcal{L} \left\{ \frac{1}{a} e^{-\frac{b}{a}t} f\left( \frac{t}{a} \right) \right\} &= \dfrac{1}{a}\int _{0} ^\infty e^{-\left(s+\frac{b}{a}\right)t}f \left( \frac{t}{a} \right) dt \\ &= \int _{0} ^\infty e^ {-(as+b)\tau}f (\tau) d\tau \\ &= F(as+b) \end{align*}

See also


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p263 ↩︎