logo

Inverse Laplace Transform of F(ks) 📂Odinary Differential Equations

Inverse Laplace Transform of F(ks)

Formulas1

Assuming that the Laplace transform L{f(t)}=0estf(t)dt=F(s)\mathcal{L} \left\{ f(t) \right\} = \displaystyle \int _{0} ^\infty e^{-st}f(t)dt = F(s) of the function f(t)f(t) exists and is s>a0s>a \ge 0 for a positive number k>0k> 0 then the inverse Laplace transform of F(ks)F(ks) is as follows.

L1{F(ks)}=1kf(tk),s>ak \mathcal{L^{-1}} \left\{ F(ks) \right\} =\dfrac{1}{k}f\left(\frac{t}{k}\right),\quad s>\frac{a}{k}

Derivation

1

The Laplace transform of f(ct)f(ct)

L{f(ct)}=1cF(sc),s>ca \mathcal{L} \left\{ f(ct) \right\} =\dfrac{1}{c}F\left(\dfrac{s}{c}\right), \quad s>ca

By substituting 1k\dfrac{1}{k} for cc in the above equation

L{f(tk)}=kF(ks)    F(ks)=1kL{f(tk)}=L{1kf(tk)} \begin{align*} \mathcal{L} \left\{ f\left(\frac{t}{k}\right) \right\} &= kF(ks) \\ \implies F(ks) &= \dfrac{1}{k} \mathcal{L} \left\{ f\left(\frac{t}{k}\right) \right\} =\mathcal{L} \left\{\dfrac{1}{k} f\left(\frac{t}{k}\right) \right\} \end{align*}

Therefore

L1{F(ks)}=1kf(tk) \mathcal{L^{-1}} \left\{ F(ks) \right\} =\dfrac{1}{k}f\left(\frac{t}{k}\right)

Since the condition when cc was s>cas>ca, the condition naturally changes to s>aks>\dfrac{a}{k}.

2

By the definition of the Laplace transform,

L{1kf(tk)}=1k0estf(tk)dt \mathcal{L} \left\{ \frac{1}{k} f\left( \frac{t}{k} \right) \right\} =\dfrac{1}{k}\int _{0} ^\infty e^{-st}f \left( \frac{t}{k} \right) dt

Let us replace tk=τ\dfrac{t}{k}=\tau with. Then st=skτst=sk\tau and dt=kdτdt=kd\tau are, so

L{1kf(tk)}=0eskτf(τ)dτ=F(ks) \begin{align*} \mathcal{L} \left\{ \frac{1}{k} f\left( \frac{t}{k} \right) \right\} &=\int _{0} ^\infty e^{-sk\tau}f \left(\tau \right) d\tau \\ &= F(ks) \end{align*}

See Also


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p263 ↩︎