logo

Laplace Transform of f(ct) 📂Odinary Differential Equations

Laplace Transform of f(ct)

Formulas1

Let’s assume that the Laplace transform L{f(t)}=0estf(t)dt=F(s)\mathcal{L} \left\{ f(t) \right\} = \displaystyle \int _{0} ^\infty e^{-st}f(t)dt = F(s) of the function f(t)f(t) exists and is s>a0s>a \ge 0. Then, for c>0c >0, the Laplace transform of f(ct)f(ct) is as follows.

L{f(ct)}=1cF(sc),s>ca \mathcal{L} \left\{ f(ct) \right\} =\dfrac{1}{c}F\left(\dfrac{s}{c}\right), \quad s>ca

Derivation

L{f(ct)}=0estf(ct)dt \mathcal{L} \left\{ f(ct) \right\} = \int _{0} ^\infty e^{-st}f(ct)dt

Let’s substitute ct=τct=\tau. Then, since st=scτst=\dfrac{s}{c}\tau and dt=1cdτdt=\dfrac{1}{c}d\tau,

L{f(τ)}=0escτf(τ)1cdτ=1c0escτf(τ)dτ=1cF(sc) \begin{align*} \mathcal{L} \left\{ f(\tau) \right\} &= \int _{0} ^{\infty} e^{-\frac{s}{c}\tau}f(\tau)\dfrac{1}{c}d\tau \\ &= \dfrac{1}{c} \int _{0} ^{\infty} e^{-\frac{s}{c}\tau}f(\tau)d\tau \\ &= \dfrac{1}{c}F\left(\dfrac{s}{c}\right) \end{align*}

The last equality holds by assumption. Also, by assumption, the Laplace transform of f(ct)f(ct) exists when s>cas >ca.

Examples

1

Since L{sint}=1s2+1\mathcal{L} \left\{ \sin t \right\}=\dfrac{1}{s^2+1},

L{sin(at)}=1a1(sa)2+1=1aa2s2+a2=as2+a2 \begin{align*} \mathcal{L} \left\{ \sin (at) \right\} &= \dfrac{1}{a}\dfrac{1}{{(\frac{s}{a})}^2+1} \\ &= \dfrac{1}{a}\dfrac{a^2}{s^2+a^2} \\ &= \dfrac{a}{s^2+a^2} \end{align*}

2

Since L{cost}=ss2+1\mathcal{L} \left\{ \cos t \right\}=\dfrac{s}{s^2+1},

$$ \begin{align*} \mathcal{L} \left\{ \cos (at) \right\} &= \dfrac{1}{a}\dfrac{s/a}{{(\frac{s}{a})}^2+1} \\ &= \dfrac{1}{a}\dfrac{sa}{s^2+a^2} \\ &= \dfrac{s}{s^2+a^2} \end{align*}
$$

See Also

blems* (11th Edition, 2017), p263


  1. William E. Boyce, *Boyce’s Elementary Differential Equations and Boundary Value Pro ↩︎