Laplace Transform of Hyperbolic Functions
Formulas1
The Laplace transforms of hyperbolic sine and hyperbolic cosine functions are as follows.
$$ \mathcal{L} \left\{ \sinh (at) \right\} = \dfrac{a}{s^2-a^2},\quad s>|a| \\ \mathcal{L} \left\{ \cosh (at) \right\} = \dfrac{s}{s^2-a^2},\quad s>|a| $$
Description
The definition of hyperbolic functions is as follows.
$$ \sinh (ax) = \dfrac{ e^{ax} - e^{-ax} }{ 2 } \\ \cosh (ax) = \dfrac{ e^{ax} + e^{-ax} }{ 2 } $$
Derivation
Use the results of the Laplace transform of the exponential function.
$\sinh (at)$
$$ \begin{align*} \mathcal{ L } \left\{ \sinh (at) \right\} &= \int_{0}^\infty e^{-st} \sinh (at) dt \\ &= \int _{0} ^\infty e^{-st} \left( \dfrac{ e^{at} - e^{-at} }{ 2 } \right) dt \\ &= \dfrac{1}{2}\int _{0}^\infty e^{-st}e^{at} dt -\dfrac{1}{2}\int _{0}^\infty e^{-st}e^{-at} dt \\ &= \dfrac{1}{2}\int _{0}^\infty e^{-(s-a)t} dt -\dfrac{1}{2}\int _{0}^\infty e^{-(s+a)t} dt \\ &= \dfrac{1}{2}\int _{0}^\infty e^{-(s-a)t} dt -\dfrac{1}{2}\int _{0}^\infty e^{-(s+a)t} dt \\ &= \dfrac{1}{2} \dfrac{1}{s-a} - \dfrac{1}{2} \dfrac{1}{s+a} \\ &= \dfrac{1}{2} \left( \dfrac{1}{s-a} -\dfrac{1}{s+a} \right) \\ &= \dfrac{1}{2}\dfrac{2a}{s^2-a^2} \\ &= \dfrac{a}{s^2-a^2} \end{align*} $$
However, as $\lim \limits_{A \to \infty} e^{-(s-a)A}$ and $\lim \limits_{A \to \infty} e^{-(s+a)A}$ converge to $0$,
$$ s>a \quad \text{and} \quad s>-a $$
Consequently, the condition $s>|a|$ applies.
■
$\cosh (at)$
Using the already calculated Laplace transform result of $\sinh (at)$,
$$ \begin{align*} &&\mathcal {L} \left\{ e^{at} \right\} &= \mathcal{ L} \left\{ \cosh (at) \right\} + \mathcal{L} \left\{ \sinh (at) \right\} \\ \implies&& \mathcal{L} \left\{ \cosh (at) \right\} &= \dfrac{1}{s-a} -\dfrac{a}{s^2-a^2} \\ && &=\dfrac{s+a}{s^2-a^2}-\dfrac{a}{s^2-a^2} \\ && &=\dfrac{s}{s^2-a^2},\quad s>|a| \end{align*} $$
■
See Also
William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p247 ↩︎