logo

Laplace Transform of Exponential Functions 📂Odinary Differential Equations

Laplace Transform of Exponential Functions

Formulas1

L{eat}=1sa,s>a \mathcal {L} \left\{ e^{at} \right\} = \dfrac{1}{s-a},\quad s>a

Description

Let’s compare this with the result of the Laplace transform of a constant function (../745).

L{1}=1s \mathcal{L} \left\{ 1 \right\} =\dfrac{1}{s}

The Laplace transform result of eate^{at} is the same as when F(s)F(s) is shifted by aa, when f(t)=1f(t)=1. This is inevitable because when eate^{at} is multiplied by the original function, estf(t)dt\displaystyle \int e^{-st}f(t) dt becomes e(sa)tf(t)dt\displaystyle \int e^{-(s-a)t} f(t) dt. Except that ss changes to sas-a, there is no difference, so the result changes from F(s)F(s) to F(sa)F(s-a).

Derivation

L{eat}=0esteatdt=0e(sa)tdt=limA[1sae(sa)t]0A=1sa \begin{align*} \mathcal{L} \left\{ e^{at} \right\} &= \int_{0}^\infty e^{-st} e^{at} dt \\ &= \int _{0} ^\infty e^{-(s-a)t}dt \\ &= \lim_{A \to \infty } \left[ -\dfrac{1}{s-a}e^{-(s-a)t} \right]_{0}^A \\ &= \dfrac{1}{s-a} \end{align*}

Provided that limAe(sa)A\lim \limits_{A \to \infty} e^{-(s-a)A} converges to 00, thus s>as>a

See Also


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p245 ↩︎