logo

Laplace Transform of Polynomial Functions 📂Odinary Differential Equations

Laplace Transform of Polynomial Functions

Formulas1

L{tp}=Γ(p+1)sp+1,s>0 \mathcal{L} \left\{ t^p \right\} = \dfrac{ \Gamma (p+1) } {s^{p+1}},\quad s>0

Explanation

The Laplace transform of a polynomial is represented by the Gamma function. If we use xpx^p instead of tpt^p, it would be easier to recognize at a glance. Usually, in differential equations, variables represent time, so xx is replaced with tt.

Derivation

L{tp}=0esttpdt=limA[1s[esttp]0A+ps0Aesttp1dt]=psL{tp1}=limA[ps1s[esttp1]0A+p(p1)s20Aesttp2dt]=p(p1)s2L{tp2} \begin{align*} \mathcal{L} \left\{ t^p \right\} &= \int_{0}^\infty e^{-st}t^p dt \\ &= \lim \limits_{A \to \infty} \left[ -\dfrac{1}{s} \left[ e^{-st}t^p \right] _{0}^A +\dfrac{p}{s} \int_{0}^A e^{-st}t^{p-1}dt \right] \\ &= \dfrac{p}{s} \mathcal{L} \left\{ t^{p-1} \right\} \\ &= \lim \limits_{A \to \infty} \left[ \dfrac{p}{s} \dfrac{-1}{s}\left[ e^{-st}t^{p-1} \right] _{0}^A + \dfrac{p(p-1)}{s^2}\int _{0}^A e^{-st} t^{p-2} dt\right] \\ &=\dfrac{p(p-1)}{s^2}\mathcal{L} \left\{t^{p-2} \right\} \\ & \vdots \end{align*}

By continuing in the same manner, after pp steps, the following can be obtained.

=p(p1)(p2)1spL{t0=1}=p!sp+1=Γ(p+1)sp+1 \begin{align*} &=\dfrac{p(p-1)(p-2) \cdots 1}{s^p}\mathcal{L} \left\{ t^0=1 \right\} \\ &=\dfrac{p!}{s^{p+1}} \\ &=\dfrac{\Gamma (p+1) }{s^{p+1}} \end{align*}

However, since limAesA\lim \limits_{A \to \infty} e^{-sA} must converge to 00, then s>0s>0.


After summarizing the Gamma function and substituting s=1s=1, it coincides with the common definition of the Gamma function.

Γ(p+1)=1sp+10esttpdt=0ettpdt \Gamma (p+1) = \dfrac{1}{s^{p+1}}\int_{0}^\infty e^{-st}t^p dt = \int_{0}^\infty e^{-t}t^p dt

See Also


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p247-248 ↩︎