logo

Jeffreys Prior Distribution 📂Mathematical Statistics

Jeffreys Prior Distribution

Definitions 1

The distribution p(yθ)p( y | \theta) is called the Jeffreys prior for π(θ)I1/2(θ)\pi ( \theta ) \propto I^{1/2} ( \theta ).


  • II refers to the Fisher information. I(θ)=E[(lnp(yθ)θ)2θ]=E[2lnp(yθ)(θ)2θ] I ( \theta ) = E \left[ \left( \left. {{\partial \ln p (y | \theta) } \over {\partial \theta}} \right)^2 \right| \theta \right] = E \left[ \left. - {{\partial^2 \ln p (y | \theta) } \over { (\partial \theta )^2 }} \right| \theta \right]

Description

While the Laplace prior π(θ)1\pi (\theta) \propto 1 was sufficient as a prior for the parameter θ\theta, for a function of the parameter, such as ϕ=θ2\phi = \theta^2, it becomes dϕ=2θdθd \phi = 2 \theta d \theta and hence π(ϕ)1ϕ\displaystyle \pi (\phi ) \propto {{1} \over {\sqrt{\phi } }}, making it not the same prior as for θ\theta. The Jeffreys prior overcomes this lack of invariance, and is essentially an upgrade over the Laplace prior.

Examples

For instance, when the data follow an exponential distribution exp(1θ)\displaystyle \exp \left( {{1} \over {\theta}} \right), the Laplace prior π(θ)c\displaystyle \pi ( \theta ) \propto c had the issue of leading to improper posterior.

First, calculating the Jeffreys prior, p(yθ)=1θexp(yθ)\displaystyle p( y | \theta ) = {{1} \over { \theta }} \exp \left( - {{ y } \over { \theta }} \right) results in lnp(yθ)θ=1θ+yθ2 {{\partial \ln p (y | \theta) } \over {\partial \theta}} = - {{1 } \over { \theta }} + {{ y} \over { \theta^2 }} Then, differentiating again with respect to θ\theta, we get p(yθ)=1θexp(yθ)\displaystyle p( y | \theta ) = {{1} \over { \theta }} \exp \left( - {{ y } \over { \theta }} \right) and thus 2lnp(yθ)(θ)2=1θ22yθ3 {{\partial^2 \ln p (y | \theta) } \over { (\partial \theta )^2 }} = {{1 } \over { \theta ^2}} - {{ 2 y} \over { \theta^3 }} Consequently, E[2lnp(yθ)(θ)2θ]=2θθ31θ2=1θ2 E \left[ \left. - {{\partial^2 \ln p (y | \theta) } \over { (\partial \theta )^2 }} \right| \theta \right] = {{ 2 \theta } \over { \theta^3 }} - {{1 } \over { \theta ^2}} = {{1 } \over { \theta ^2}} and we obtain the Jeffreys prior π(θ)=1θ\displaystyle \pi ( \theta ) = {{1 } \over { \theta }}.

To check if this posterior is appropriate, setting θ=1z\displaystyle \theta = {{1} \over {z}} and computing the definite integral results in 0p(θy)dθ0z2exp(yz)1z2dx=1y< \int_{0 }^{\infty} p ( \theta | y ) d \theta \propto \int_{0}^{\infty} z^2 \exp ( - y z ) {{1} \over {z^2}} dx = {{1} \over {y}} < \infty Therefore, in this case, it can be confirmed that the Jeffreys prior induced an appropriate posterior.


  1. 김달호. (2013). R과 WinBUGS를 이용한 베이지안 통계학: p118. ↩︎