logo

Proof of Lissajous's Auxiliary Lemma 📂Banach Space

Proof of Lissajous's Auxiliary Lemma

Theorem 1

In the normed space (X,)(X , \| \cdot \| ), let’s say YY is a closed set for the subspace YXY \subsetneq X. For all θ(0,1)\theta \in (0,1) and yYy \in Y, there exists xθXx_{\theta} \in X that satisfies xθ=1\| x_{ \theta } \| = 1 and xθy>θ\| x_{ \theta } - y \| > \theta.

Proof

Strategy: Show that a concrete xθx_{\theta} exists and then xθy>θ\| x_{ \theta } - y \| > \theta holds.


Let’s say x0x_{0} is x0Y x_{0 } \notin Y and x0X x_{0 } \in X. Assuming d=0d=0, there exists a sequence {yn}nN\left\{ y_{n} \right\}_{n \in \mathbb{N} } of YY that satisfies limnx0yn=0\displaystyle \lim_{ n \to \infty } \| x_{0} - y_{n} \| = 0. This means x0Yx_{0} \in \overline{Y}, but since Y=Y\overline{Y} = Y, it leads to a contradiction, hence it must be d>0d> 0.

20181015\_215433.png

Now, there exists y0Yy_{0} \in Y that satisfies 0<x0y0<dθ\displaystyle 0 < \| x_{0} - y_{0} \| < {{d} \over {\theta }}, further away than the distance dd between the edge of x0x_{0} and Y\overline{Y}. Let’s call this θ\theta. If yYy \in Y, then

xθy=x0y0x0y0y=1x0y0x0y0x0y0y \| x_{ \theta} - y \| = \left\| {{ x_{0} - y_{0} } \over { \| x_{0} - y_{0} \| }} - y \right\| = {{1 } \over { \| x_{0} - y_{0} \| }} \left\| x_{0} - y_{0} - \| x_{0} - y_{0} \| y \right\|

Since (y0+x0y0y)Y(y_{0} + \| x_{0} - y_{0} \| y) \in Y and x0y0x0y0yd\left\| x_{0} - y_{0} - \| x_{0} - y_{0} \| y \right\| \ge d,

xθy1x0y0d \| x_{ \theta} - y \| \ge {{1 } \over { \| x_{0} - y_{0} \| }} d

Because of x0y0<dθ\displaystyle \| x_{0} - y_{0} \| < {{d} \over {\theta }}, the following holds.

xθy>θdd=θ \| x_{ \theta} - y \| > {{ \theta } \over {d }} d = \theta


  1. Kreyszig. (1989). Introductory Functional Analysis with Applications: p78. ↩︎