logo

Proof of the Completeness of Finite Dimensional Normed Spaces 📂Banach Space

Proof of the Completeness of Finite Dimensional Normed Spaces

Theorem 1

Finite-dimensional normed spaces are complete.

Description

Accordingly, finite-dimensional vector spaces become Banach spaces merely by the definition of a norm. This is particularly useful because of the frequent use of Rn\mathbb{R}^{n} or Cn\mathbb{C}^{n}.

Proof

Strategy: Utilize the fact that we are dealing with a finite-dimensional vector space to break down every vector into basis units and define a convenient norm. Transform abstract calculations into direct calculations by leveraging the equivalence of norms.


For a finite-dimensional normed space (X,0)(X, \| \cdot \|_{0} ), there exists a basis {e1,,en}\left\{ e_{1} , \cdots , e_{n} \right\}.

  • Part 1

    Let’s define the Cauchy sequence {xk}kN\left\{ x_{k} \right\}_{k \in \mathbb{N} } of XX as follows.

    x1=λ1(1)e1++λn(1)en x_{1} = \lambda_{1}^{(1)} e_{1} + \cdots + \lambda_{n}^{(1)} e_{n}

    x2=λ1(2)e1++λn(2)en x_{2} = \lambda_{1}^{(2)} e_{1} + \cdots + \lambda_{n}^{(2)} e_{n}

    \vdots

    xk=λ1(k)e1++λn(k)en x_{k} = \lambda_{1}^{(k)} e_{1} + \cdots + \lambda_{n}^{(k)} e_{n}

  • Part 2

    λ1e1++λnen:=k=1nλk \| \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n} \| : = \sum_{k=1}^{n} | \lambda_{k} |

    Let’s define the norm \| \cdot \| as the sum of the absolute values of the coefficients of the linear combination.

Since XX is a finite-dimensional normed space, 0\| \cdot \|_{0} \sim \| \cdot \| and for some m,M>0m , M > 0

mxkxmxkxm0Mxkxm m \| x_{k} - x_{m} \| \le \| x_{k} - x_{m} \|_{0} \le M \| x_{k} - x_{m} \|

  • Part 3

    By the definition of \| \cdot \|

    mxkxmxkxm0 m \| x_{k} - x_{m} \| \le \| x_{k} - x_{m} \|_{0}

        m(λ1(k)λ1(m)++λn(k)λn(m))xkxm0 \implies m \left( \left| \lambda_{1}^{(k)} - \lambda_{1}^{(m)} \right| + \cdots + \left| \lambda_{n}^{(k)} - \lambda_{n}^{(m)} \right| \right) \le \| x_{k} - x_{m} \|_{0}

    Since {xk}kN\left\{ x_{k} \right\}_{k \in \mathbb{N} } is a Cauchy sequence, when k,mk,m \to \infty, then xkxm00\| x_{k} - x_{m} \|_{0} \to 0. Thus, for all 1in1 \le i \le n

    limk,mm(λi(k)λi(m))0 \lim_{k,m \to \infty } m \left( \left| \lambda_{i}^{(k)} - \lambda_{i}^{(m)} \right| \right) \to 0

    Therefore, {λi(k)}kN\left\{ \lambda_{i}^{(k)} \right\}_{k \in \mathbb{N}} are Cauchy sequences, and since C\mathbb{C} is a complete space, they converge to some λiC\lambda_{i} \in \mathbb{C}.

  • Part 4

    If we set x:=λ1e1++λnenx := \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n}

    xkx0Mxkx \| x_{k} - x \|_{0} \le M \| x_{k} - x \|

        xkx0M(λ1(k)λ1++λn(k)λn) \implies \| x_{k} - x \|_{0} \le M \left( \left| \lambda_{1}^{(k)} - \lambda_{1} \right| + \cdots + \left| \lambda_{n}^{(k)} - \lambda_{n} \right| \right)

        0limkxkx0limkM(λ1(k)λ1++λn(k)λn) \implies 0 \le \lim_{k \to \infty} \| x_{k} - x \|_{0} \le \lim_{k \to \infty} M \left( \left| \lambda_{1}^{(k)} - \lambda_{1} \right| + \cdots + \left| \lambda_{n}^{(k)} - \lambda_{n} \right| \right)

        limkxkx0=0 \implies \lim_{k \to \infty} \| x_{k} - x \|_{0} = 0

    Therefore, the Cauchy sequence {xk}kN\left\{ x_{k} \right\}_{k \in \mathbb{N} } of XX converges to xXx \in X.


  1. Kreyszig. (1989). Introductory Functional Analysis with Applications: p73. ↩︎