Proof of the Completeness of Finite Dimensional Normed Spaces
📂Banach Space Proof of the Completeness of Finite Dimensional Normed Spaces Theorem Finite-dimensional normed spaces are complete.
Description Accordingly, finite-dimensional vector spaces become Banach spaces merely by the definition of a norm. This is particularly useful because of the frequent use of R n \mathbb{R}^{n} R n or C n \mathbb{C}^{n} C n .
Proof Strategy: Utilize the fact that we are dealing with a finite-dimensional vector space to break down every vector into basis units and define a convenient norm. Transform abstract calculations into direct calculations by leveraging the equivalence of norms.
For a finite-dimensional normed space ( X , ∥ ⋅ ∥ 0 ) (X, \| \cdot \|_{0} ) ( X , ∥ ⋅ ∥ 0 ) , there exists a basis { e 1 , ⋯ , e n } \left\{ e_{1} , \cdots , e_{n} \right\} { e 1 , ⋯ , e n } .
Part 1
Let’s define the Cauchy sequence { x k } k ∈ N \left\{ x_{k} \right\}_{k \in \mathbb{N} } { x k } k ∈ N of X X X as follows.
x 1 = λ 1 ( 1 ) e 1 + ⋯ + λ n ( 1 ) e n
x_{1} = \lambda_{1}^{(1)} e_{1} + \cdots + \lambda_{n}^{(1)} e_{n}
x 1 = λ 1 ( 1 ) e 1 + ⋯ + λ n ( 1 ) e n
x 2 = λ 1 ( 2 ) e 1 + ⋯ + λ n ( 2 ) e n
x_{2} = \lambda_{1}^{(2)} e_{1} + \cdots + \lambda_{n}^{(2)} e_{n}
x 2 = λ 1 ( 2 ) e 1 + ⋯ + λ n ( 2 ) e n
⋮
\vdots
⋮
x k = λ 1 ( k ) e 1 + ⋯ + λ n ( k ) e n
x_{k} = \lambda_{1}^{(k)} e_{1} + \cdots + \lambda_{n}^{(k)} e_{n}
x k = λ 1 ( k ) e 1 + ⋯ + λ n ( k ) e n
Part 2
∥ λ 1 e 1 + ⋯ + λ n e n ∥ : = ∑ k = 1 n ∣ λ k ∣
\| \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n} \| : = \sum_{k=1}^{n} | \lambda_{k} |
∥ λ 1 e 1 + ⋯ + λ n e n ∥ := k = 1 ∑ n ∣ λ k ∣
Let’s define the norm ∥ ⋅ ∥ \| \cdot \| ∥ ⋅ ∥ as the sum of the absolute values of the coefficients of the linear combination.
Since X X X is a finite-dimensional normed space , ∥ ⋅ ∥ 0 ∼ ∥ ⋅ ∥ \| \cdot \|_{0} \sim \| \cdot \| ∥ ⋅ ∥ 0 ∼ ∥ ⋅ ∥ and for some m , M > 0 m , M > 0 m , M > 0
m ∥ x k − x m ∥ ≤ ∥ x k − x m ∥ 0 ≤ M ∥ x k − x m ∥
m \| x_{k} - x_{m} \| \le \| x_{k} - x_{m} \|_{0} \le M \| x_{k} - x_{m} \|
m ∥ x k − x m ∥ ≤ ∥ x k − x m ∥ 0 ≤ M ∥ x k − x m ∥
Part 3
By the definition of ∥ ⋅ ∥ \| \cdot \| ∥ ⋅ ∥
m ∥ x k − x m ∥ ≤ ∥ x k − x m ∥ 0
m \| x_{k} - x_{m} \| \le \| x_{k} - x_{m} \|_{0}
m ∥ x k − x m ∥ ≤ ∥ x k − x m ∥ 0
⟹ m ( ∣ λ 1 ( k ) − λ 1 ( m ) ∣ + ⋯ + ∣ λ n ( k ) − λ n ( m ) ∣ ) ≤ ∥ x k − x m ∥ 0
\implies m \left( \left| \lambda_{1}^{(k)} - \lambda_{1}^{(m)} \right| + \cdots + \left| \lambda_{n}^{(k)} - \lambda_{n}^{(m)} \right| \right) \le \| x_{k} - x_{m} \|_{0}
⟹ m ( λ 1 ( k ) − λ 1 ( m ) + ⋯ + λ n ( k ) − λ n ( m ) ) ≤ ∥ x k − x m ∥ 0
Since { x k } k ∈ N \left\{ x_{k} \right\}_{k \in \mathbb{N} } { x k } k ∈ N is a Cauchy sequence, when k , m → ∞ k,m \to \infty k , m → ∞ , then ∥ x k − x m ∥ 0 → 0 \| x_{k} - x_{m} \|_{0} \to 0 ∥ x k − x m ∥ 0 → 0 . Thus, for all 1 ≤ i ≤ n 1 \le i \le n 1 ≤ i ≤ n
lim k , m → ∞ m ( ∣ λ i ( k ) − λ i ( m ) ∣ ) → 0
\lim_{k,m \to \infty } m \left( \left| \lambda_{i}^{(k)} - \lambda_{i}^{(m)} \right| \right) \to 0
k , m → ∞ lim m ( λ i ( k ) − λ i ( m ) ) → 0
Therefore, { λ i ( k ) } k ∈ N \left\{ \lambda_{i}^{(k)} \right\}_{k \in \mathbb{N}} { λ i ( k ) } k ∈ N are Cauchy sequences, and since C \mathbb{C} C is a complete space, they converge to some λ i ∈ C \lambda_{i} \in \mathbb{C} λ i ∈ C .
Part 4
If we set x : = λ 1 e 1 + ⋯ + λ n e n x := \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n} x := λ 1 e 1 + ⋯ + λ n e n
∥ x k − x ∥ 0 ≤ M ∥ x k − x ∥
\| x_{k} - x \|_{0} \le M \| x_{k} - x \|
∥ x k − x ∥ 0 ≤ M ∥ x k − x ∥
⟹ ∥ x k − x ∥ 0 ≤ M ( ∣ λ 1 ( k ) − λ 1 ∣ + ⋯ + ∣ λ n ( k ) − λ n ∣ )
\implies \| x_{k} - x \|_{0} \le M \left( \left| \lambda_{1}^{(k)} - \lambda_{1} \right| + \cdots + \left| \lambda_{n}^{(k)} - \lambda_{n} \right| \right)
⟹ ∥ x k − x ∥ 0 ≤ M ( λ 1 ( k ) − λ 1 + ⋯ + λ n ( k ) − λ n )
⟹ 0 ≤ lim k → ∞ ∥ x k − x ∥ 0 ≤ lim k → ∞ M ( ∣ λ 1 ( k ) − λ 1 ∣ + ⋯ + ∣ λ n ( k ) − λ n ∣ )
\implies 0 \le \lim_{k \to \infty} \| x_{k} - x \|_{0} \le \lim_{k \to \infty} M \left( \left| \lambda_{1}^{(k)} - \lambda_{1} \right| + \cdots + \left| \lambda_{n}^{(k)} - \lambda_{n} \right| \right)
⟹ 0 ≤ k → ∞ lim ∥ x k − x ∥ 0 ≤ k → ∞ lim M ( λ 1 ( k ) − λ 1 + ⋯ + λ n ( k ) − λ n )
⟹ lim k → ∞ ∥ x k − x ∥ 0 = 0
\implies \lim_{k \to \infty} \| x_{k} - x \|_{0} = 0
⟹ k → ∞ lim ∥ x k − x ∥ 0 = 0
Therefore, the Cauchy sequence { x k } k ∈ N \left\{ x_{k} \right\}_{k \in \mathbb{N} } { x k } k ∈ N of X X X converges to x ∈ X x \in X x ∈ X .
■