logo

Consistency and Order of Convergence of Multistep Methods 📂Numerical Analysis

Consistency and Order of Convergence of Multistep Methods

Theorem

The necessary and sufficient condition for a multistep method {y=f(x,y)(y(x0),,y(xp))=(Y0,,Yp)\begin{cases} y ' = f(x,y) \\ ( y( x_{0} ) , \cdots , y(x_{p}) )= ( Y_{0} , \cdots , Y_{p} ) \end{cases} to be consistent is (i), and the necessary and sufficient condition to have convergence order mNm \in \mathbb{N} is (ii).

  • (i): {j=0paj=1j=0pjaj+j=1pbj=1\begin{cases} \displaystyle \sum_{j = 0}^{p} a_{j} = 1 \\ \displaystyle - \sum_{j = 0}^{p} j a_{j} + \sum_{j = -1}^{p} b_{j} = 1 \end{cases}
  • (ii): For i=0,1,,mi = 0, 1 , \cdots , m, j=0p(j)iaj+ij=1p(j)i1bj=1\sum_{j=0}^{p} (-j)^{i} a_{j} + i \sum_{j=-1}^{p} (- j )^{i-1} b_{j} = 1

Explanation

It is more appropriate to consider multistep methods as a form encompassing numerous methods rather than any single method. This theorem is useful for checking consistency and convergence order across various methods, and since both (i) and (ii) are necessary and sufficient conditions, it can also be used to understand when a method is meaningful or how to increase its convergence speed.

Proof 1

(i)

The truncation error Tn(Y):=Yn+1j=0pajYnj+hj=1pbjYnj\displaystyle T_{n} (Y) := Y_{n+1} - \sum_{j=0}^{p} a_{j} Y_{n-j} + h \sum_{j = -1}^{p} b_{j} Y’_{n-j} is linear. That is, Tn(αY+βW)=αTn(Y)+βTn(W) T_{n} ( \alpha Y + \beta W ) = \alpha T_{n} (Y) + \beta T_{n} (W)


Part 1.

Expanding the solution to the initial value problem Y(x)Y(x) in terms of xnx_{n} up to mm order Taylor expansion, we get Y(x)=i=0m1i!(xxn)iY(i)(xn)+Rm+1(x) Y(x) = \sum_{i=0}^{m} {{1} \over {i! }} (x - x_{n} )^{i} Y^{ ( i ) } ( x_{n} ) + R_{m+1} (x) Expressing it in terms of the truncation error, we have Tn(Y)=i=0m1i!Y(i)(xn)Tn((xxn)i)+Tn(Rm+1) T_{n} (Y) = \sum_{i=0}^{m} {{1} \over {i! }} Y^{ ( i ) } ( x_{n} ) T_{n} \left( (x - x_{n} )^{i} \right) + T_{n} \left( R_{m+1} \right)


Part 2.

Let’s calculate Tn((xxn)i)T_{n} \left( (x - x_{n} )^{i} \right).

  • Case 1. i=0i = 0
    Tn(1)=1j=0paj1+hj=1pbj(1)=1j=0paj \displaystyle T_{n} (1) = 1 - \sum_{j=0}^{p} a_{j} 1 + h \sum_{j = -1}^{p} b_{j} ( 1 ) ' = 1 - \sum_{j=0}^{p} a_{j} Here, let c0:=1j=0paj\displaystyle c_{0} : = 1 - \sum_{j=0}^{p} a_{j}.
  • Case 2. i1i \ge 1
    Tn((xxn)i)=(xn+1xn)i[j=0paj(xnjxn)i+hj=1pbji(xnjxn)i1]=hi[hij=0paj(j)i+hiij=1pbj(j)i1]=hi[1(j=0p(j)iaj+ij=1p(j)i1bj)] \begin{align*} \displaystyle T_{n} \left( ( x - x_{n})^{i} \right) =& (x_{n+1} - x_{n})^{i} - \left[ \sum_{j=0}^{p} a_{j} ( x_{n-j} - x_{n} )^{i} + h \sum_{j = -1}^{p} b_{j} i ( x_{n-j} - x_{n} )^{i-1} \right] \\ =& h^{i} - \left[ h^{i} \sum_{j=0}^{p} a_{j} ( -j )^{i} + h^{i} i \sum_{j = -1}^{p} b_{j} ( -j )^{i-1} \right] \\ =& h^{i} \left[ 1 - \left( \sum_{j=0}^{p} ( -j )^{i} a_{j} + i \sum_{j = -1}^{p} ( -j )^{i-1} b_{j} \right) \right] \end{align*} Here, let ci:=1(j=0p(j)iaj+ij=1p(j)i1bj)\displaystyle c_{i} : =1 - \left( \sum_{j=0}^{p} ( -j )^{i} a_{j} + i \sum_{j = -1}^{p} ( -j )^{i-1} b_{j} \right) be.

In any case of ii, we obtain the following. Tn(Y)=i=0mcihii!Y(i)(xn)+Tn(Rm+1) T_{n} (Y) = \sum_{i=0}^{m} {{c_{i} h^{i} } \over {i! }} Y^{ ( i ) } ( x_{n} ) + T_{n} \left( R_{m+1} \right)


Part 3.

For the multistep method to be consistent, limh0maxxpxnbTnh(Y)=0 \lim_{h \to 0} \max_{x_{p} \le x_{n} \le b} \left| {{T_{n}} \over {h}} (Y) \right| = 0 it has to satisfy Tn(Y)=O(h2)T_{n} (Y) = O(h^2). From Part 2, Tn(Y)=i=0mcihii!Y(i)(xn)+Tn(Rm+1) T_{n} (Y) = \sum_{i=0}^{m} {{c_{i} h^{i} } \over {i! }} Y^{ ( i ) } ( x_{n} ) + T_{n} \left( R_{m+1} \right) was established, so it suffices if m=1m=1 till c0=c1=0c_{0} = c_{1} = 0. Summing up, {j=0paj=1j=0pjaj+j=1pbj=1 \begin{cases} \displaystyle \sum_{j = 0}^{p} a_{j} = 1 \\ \displaystyle - \sum_{j = 0}^{p} j a_{j} + \sum_{j = -1}^{p} b_{j} = 1 \end{cases}

(ii)

Part 4. Since Rm+1=1(m+1)!(xxn)m+1Y(m+1)(xn)+=O(hm+1) R_{m+1} = {{1} \over { (m+1)! }} (x - x_{n} )^{m+1} Y^{(m+1)} (x_{n}) + \cdots = O (h^{m+1} ) , Tn(Rm+1)=cm+1(m+1)!hm+1Y(m+1)(xn)+O(hm+2) T_{n} ( R_{m+1} ) = {{ c_{m+1} } \over { (m+1)! }} h^{m+1} Y^{(m+1)} (x_{n}) + O (h^{m+2} ) For the multistep method to have convergence order mm, maxxpxnbTnh(Y)=O(hm) \max_{x_{p} \le x_{n} \le b} \left| {{T_{n}} \over {h}} (Y) \right| = O ( h^{m} ) thus, it suffices to satisfy Tn(Y)=O(hm+1)T_{n} (Y) = O(h^{m+1}). This simply requires that for i=0,1,,mi = 0,1, \cdots , m, ci=0c_{i} = 0 is satisfied. In summary, for i=0,1,,mi = 0, 1 , \cdots , m, j=0p(j)iaj+ij=1p(j)i1bj=1 \sum_{j=0}^{p} (-j)^{i} a_{j} + i \sum_{j=-1}^{p} (- j )^{i-1} b_{j} = 1


  1. Atkinson. (1989). An Introduction to Numerical Analysis(2nd Edition): p358~359. ↩︎