logo

Strong Lipschitz Condition and Error of the Euler Method 📂Numerical Analysis

Strong Lipschitz Condition and Error of the Euler Method

Theorem

Let’s assume that the solution Y(x)Y(x) to the initial value problem {y=f(x,y)y(x0)=Y0\begin{cases} y ' = f(x,y) \\ y( x_{0} ) = Y_{0} \end{cases}, defined in [x0,b]×R[x_{0} , b] \times \mathbb{R} for ff, is twice differentiable in [x0,b][x_{0} , b]. If ff satisfies strong Lipschitz condition f(x,y1)f(x,y2)Ky1y2 |f(x,y_{1} ) - f(x,y_{2}) | \le K | y_{1} - y_{2} | for all x0xbx_{0} \le x \le b, y1,y2R y_{1} , y_{2} \in \mathbb{R}, and K0K \ge 0, then for the solution {yn(xn) : x0xnb}\left\{ y_{n} ( x_{ n } ) \ : \ x_{0} \le x_{n} \le b \right\} obtained by Euler’s method, we have maxx0xnbYxnyh(xn)ϵ(bx0)Kϵ0+[ϵ(bx0)K1K]τ(h) \max_{ x_{0 } \le x_{n} \le b } | Y_{x_{n}} - y_{h} (x_{n}) | \le \epsilon^{( b - x_{0} ) K} | \epsilon_{0} | + \left[ {{ \epsilon^{(b- x_{0}) K } - 1 } \over {K}} \right] \tau (h) where τ(h)=h2Y’’\tau (h) = {{h} \over {2}} \left\| Y’’ \right\|_{\infty} and ϵ0=Y0yh(x0)\epsilon_{0} = Y_{0} - y_{h} (x_{0 } ).

See Also

Strong Lipschitz condition     \implies Lipschitz condition     \implies Local Lipschitz condition

Description

To sum up what has been a lengthy explanation, there’s a slightly stronger condition than the Lipschitz condition that speaks to the accuracy of solutions derived from Euler’s method. Unlike the case with just the Lipschitz condition, which assumes continuity, the strong Lipschitz condition also considers differentiability.

Proof 1

xn+1xn=h x_{n+1} - x_{n} = h

Yn:=Y(xn) Y_{n} := Y(x_{n} )

yn:=y(xn) y_{n} := y(x_{n}) Let’s denote the error at the nnth step by ϵn:=Y(xn)y(xn)\epsilon_{n} : = Y(x_{n}) - y (x_{n} ).

If we perform an 22th order Taylor expansion of Y(xn+1)Y(x_{n+1} ) with respect to xn x_{n}, for some xnξnxn+1x_{n} \le \xi_{n} \le x_{n+1}, Yn+1=Yn+hYn+h22Y’’(ξn) Y_{n+1} = Y_{n} + h Y’_{n} + {{h^2} \over {2}} Y’’ ( \xi_{n} ) Let’s conveniently denote it as τn:=h2Y’’(ξn)\displaystyle \tau_{n} := {{h} \over {2}} Y’’ ( \xi_{n} ), Yn+1=Yn+hYn+hτn Y_{n+1} = Y_{n} + h Y’_{n} + h \tau_{n}

maxnτnτ(h) \max_{n} | \tau_{n} | \le \tau (h) Subtracting the equation obtained by Euler’s method, yn+1=yn+hf(xn,yn)y_{n+1} = y_{n} + h f ( x_{n} , y_{n} ), from both sides, Yn+1yn+1=Ynyn+h(f(xn,Yn)f(xn,yn))+hτn Y_{n+1} - y_{n+1} = Y_{n} - y_{n} + h ( f( x_{n} , Y_{n} ) - f (x_{n} , y_{n}) ) + h \tau_{n} If we express it in terms of ϵn\epsilon_{n}, ϵn+1=ϵn+h(f(xn,Yn)f(xn,yn))+hτn \epsilon_{n+1} = \epsilon_{n} + h ( f( x_{n} , Y_{n} ) - f (x_{n} , y_{n}) ) + h \tau_{n} Taking the absolute value of both sides, ϵn+1ϵn+hf(xn,Yn)f(xn,yn)+hτ(h) | \epsilon_{n+1} | \le | \epsilon_{n} | + h | f( x_{n} , Y_{n} ) - f (x_{n} , y_{n}) | + h | \tau (h) | By the Lipschitz condition, ϵn+1ϵn+hKYnyn+hτ(h) | \epsilon_{n+1} | \le | \epsilon_{n} | + h K | Y_{n} - y_{n} | + h | \tau (h) | To summarize, ϵn+1(1+hK)ϵn+hτ(h) | \epsilon_{n+1} | \le (1 + hK ) | \epsilon_{n} | + h | \tau (h) | Solving it recursively, ϵn+1(1+hK)nϵ0+[1+(1+hK)++(1+hK)n1]hτ(h) | \epsilon_{n+1} | \le (1 + hK )^n | \epsilon_{0} | + [ 1 + (1 + hK) + \cdots + (1 + hK)^{n-1} ] h | \tau (h) | By the Sum formula of a finite geometric series, ϵn+1(1+hK)nϵ0+[(1+hK)n1hK]hτ(h) | \epsilon_{n+1} | \le (1 + hK )^n | \epsilon_{0} | + \left[ {{ (1+ hK)^{n} - 1} \over {hK }} \right] h | \tau (h) |

Following the Bernoulli’s inequality: (1+x)αexα(1 + x )^{ \alpha } \le e^{ x \alpha }

According to a corollary of Bernoulli’s inequality, because (1+hK)nehKn (1 + hK )^n \le e^{hKn}, ϵne(bx0)Kϵ0+[e(bx0)K1K]τ(h) | \epsilon_{n} | \le e^{( b - x_{0} ) K} | \epsilon_{0} | + \left[ {{ e^{(b- x_{0}) K } - 1 } \over {K}} \right] \tau (h)

Additional Conditions

Now, let’s think about adding a condition from ϵn+1ϵn+hKYnyn+hτ(h)\displaystyle | \epsilon_{n+1} | \le | \epsilon_{n} | + h K | Y_{n} - y_{n} | + h | \tau (h) | due to the Lipschitz condition up to f(x,y)y0\displaystyle {{\partial f (x,y) } \over { \partial y }} \le 0. To beautify the expression, ϵn+1(1+hK)ϵn+h22Y’’(ξn) | \epsilon_{n+1} | \le (1 + hK) | \epsilon_{n} | + {{h^2} \over {2}} | Y’’ ( \xi_{n } ) | By the Mean valuetheorem, K=f(x,y1)f(x,y2)y1y2=f(xn,ζn)y K = \left| {{f(x,y_{1} ) - f(x,y_{2}) } \over {y_{1} - y_{2}}} \right| = \left| {{ \partial f ( x_{n} , \zeta_{n} ) } \over { \partial y }} \right| there exists ζnH{yh(xn),Y(xn)}\zeta_{n} \in \mathscr{H} \left\{ y_{h} (x_{n} ) , Y ( x_{n} ) \right\} that satisfies. If hh is sufficiently small so that 1+hf(xn,ζn)y1\displaystyle 1+ h {{ \partial f ( x_{n} , \zeta_{n} ) } \over { \partial y }} \ge -1, then ϵn+1ϵn+h22Y’’(ξn) | \epsilon_{n+1} | \le | \epsilon_{n} | + {{h^2} \over {2}} | Y’’ ( \xi_{n } ) | Solving this inequality recursively as well, ϵnϵ0+h22[Y’’(ξ0)++Y’’(ξn1)] | \epsilon_{n} | \le | \epsilon_{0} | + {{h^2} \over {2}} [ |Y’’ ( \xi_{0 } ) | + \cdots + |Y’’ ( \xi_{n-1 } ) | ] Therefore, ϵnϵ0+h22nY’’ | \epsilon_{n} | \le | \epsilon_{0} | + {{h^2} \over {2}} n \left\| Y’’ \right\|_{\infty} since nh=bx0nh = b - x_{0}, ϵnϵ0+h2Y’’(bx0) | \epsilon_{n} | \le | \epsilon_{0} | + {{h} \over {2}} \left\| Y’’ \right\|_{\infty} ( b - x_{0}) This means that the condition f(x,y)y0\displaystyle {{\partial f (x,y) } \over { \partial y }} \le 0 has linearly reduced the upper bound of the error, which would have increased exponentially with respect to (bx0)(b - x_{0}) originally. Fortunately, many problems found in natural phenomena satisfy this assumption, thereby significantly reducing the error.


  1. Atkinson. (1989). An Introduction to Numerical Analysis(2nd Edition): p347. xi:=x0+ih x_{i} : = x_{0} + ih  ↩︎