logo

Proof of Hölder's Inequality in Lebesgue Spaces 📂Lebesgue Spaces

Proof of Hölder's Inequality in Lebesgue Spaces

Theorem1

Let us consider ΩRn\Omega \subset \mathbb{R}^{n} as an open set. Suppose we’re given two constants 1<p<,1<p<1 \lt p \lt \infty, 1 \lt p^{\prime} \lt \infty satisfying the following equation.

1p+1p=1(or p=pp1) \dfrac{1}{p}+\dfrac{1}{p^{\prime}} = 1 \left(\text{or } p^{\prime} = \frac{p}{p-1} \right)

If uLp(Ω)u \in L^p(\Omega) and vLp(Ω)v\in L^{p^{\prime}}(\Omega), then uvL1(Ω)uv \in L^1(\Omega), and the inequality below holds.

uv1=Ωu(x)v(x)dxupvp \| uv \|_{1} = \int_{\Omega} |u(x)v(x)| dx \le \| u \|_{p} \| v \|_{p^{\prime}}

This inequality is known as Hölder’s inequality.

Explanation

pp^{\prime} is known as the Hölder conjugate or conjugate exponent of pp. It is often denoted as qq.

If u(x)p| u(x) |^{p} and v(x)p| v(x) |^{p^{\prime}} are proportional almost everywhere in Ω\Omega, equality holds.

It is essentially the same as Hölder’s inequality in Euclidean spaces, and it also becomes the Cauchy-Schwarz inequality when p=p=2p=p^{\prime}=2. The proof is no different than that of the Cauchy-Schwarz inequality, with the addition of Young’s inequality.

It can also be generalized in the following form.

uvr=(Ωu(x)v(x)rdx)1/rupvp \| uv \|_{r} = \left( \int_{\Omega} |u(x)v(x)|^{r} dx \right)^{1/r} \le \| u \|_{p} \| v\|_{p^{\prime}}

ur=(Ωu(x)rdx)1/rj=1Nujpj=u1p1uNpN \| u \|_{r} = \left( \int_{\Omega} |u(x)|^{r} dx \right)^{1/r} \le \prod_{j=1}^{N} \| u_{j} \|_{{p}_j} = \| u_{1} \|_{{p}_1} \cdots \| u_{N} \|_{p_{N}}

Proof

Young’s Inequality

Given 1p+1p=1\dfrac{1}{p} + \dfrac{1}{p^{\prime}} = 1 satisfies and for two constants greater than 1, p,pp, p^{\prime}, and two positive numbers a,ba,b,

abapp+bpp ab \le { {a^{p}} \over {p} } + {{b^{p^{\prime}}} \over {p^{\prime}}}

  • Case 1. up=0\| u \|_{p} = 0 or vp=0\| v \|_{p^{\prime}} = 0

    Since almost everywhere in Ω\Omega is u(x)=0u(x) = 0 or almost everywhere in Ω\Omega is v(x)=0v(x) = 0, almost everywhere in Ω\Omega is u(x)v(x)=0u(x)v(x) = 0. Therefore,

    Ωu(x)v(x)dx=uv1=0 \left| \int_{\Omega} u(x) v(x) dx \right| = \| uv \|_{1} = 0

    and

    upvp=0 \| u \|_{p} \| v \|_{p^{\prime}} = 0

    hence the inequality is satisfied.

  • Case 2. Other cases

    By substituting a=u(x)upa = \dfrac{\left| u(x) \right|}{\| u \|_{p}} and b=v(x)vpb = \dfrac{\left| v(x) \right|}{\| v \|_{p^{\prime}}} in Young’s inequality, we have

    u(x)upv(x)vpu(x)ppupp+v(x)ppvpp \dfrac{\left| u(x) \right|}{\| u \|_{p}} \dfrac{\left| v(x) \right|}{\| v \|_{p^{\prime}}} \le \dfrac{ \left| u(x) \right|^{p}}{ p \| u \|_{p}^{p}} + \dfrac{\left| v(x) \right|^{p^{\prime}}}{ p^{\prime} \| v \|_{p^{\prime}}^{p^{\prime}}}

    Integrating both sides yields

    1upvpΩu(x)v(x)dx1puppΩu(x)pdx+1pvppΩv(x)pdx1puppupp+1pvppvpp1p+1p=1 \begin{align*} \dfrac{1}{\| u \|_{p} \| v \|_{p^{\prime}}} \int_{\Omega}\left| u(x)v(x) \right| dx \le & \dfrac{1}{p \| u \|_{p}^{p}} \int_{\Omega} \left| u(x) \right|^{p} dx + \dfrac{1}{ p^{\prime} \| v \|_{p^{\prime}}^{p^{\prime}}} \int_{\Omega} \left| v(x) \right|^{p^{\prime}} dx \\ \le & \dfrac{1}{p \| u \|_{p}^{p}} \| u \|_{p}^{p} + \dfrac{1}{ p^{\prime} \| v \|_{p^{\prime}}^{p^{\prime}}} \| v \|_{p^{\prime}}^{p^{\prime}} \\ \le & \dfrac{1}{p} + \dfrac{1}{ p^{\prime} } \\ =& 1 \end{align*}

    Moving the constant to the left side gives

    uv1=Ωu(x)v(x)dxupvp \| uv \|_{1} = \int_{\Omega} |u(x)v(x)| dx \le \| u \|_{p} \| v \|_{p^{\prime}}

    Thus, uvL1(Ω)uv \in L^{1}(\Omega) holds, and the inequality is satisfied.

See also


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p24-25 ↩︎