logo

The Equivalence Between Two Normally Distributed Random Variables Being Independent and Having a Covariance of Zero 📂Mathematical Statistics

The Equivalence Between Two Normally Distributed Random Variables Being Independent and Having a Covariance of Zero

Theorem

X1N(μ1,σ1)X2N(μ2,σ2) X_{1} \sim N ( \mu_{1} , \sigma_{1} ) \\ X_{2} \sim N ( \mu_{2} , \sigma_{2} ) Surface X1X2    cov(X1,X2)=0 X_{1} \perp X_{2} \iff \text{cov} (X_{1} , X_{2} ) = 0

Description

Generally, being uncorrelated does not imply independence. However, if there is an assumption that the distributions follow a normal distribution, then having a covariance of 00 guarantees independence.

Proof

(    )( \implies )

MX1(t1)=exp[μ1t1+12σ1t12]MX2(t2)=exp[μ2t2+12σ2t22] M_{X_{1}} (t_{1} ) = \exp \left[ \mu_{1} t_{1} + {{1} \over {2}} \sigma_{1} t_{1}^{2} \right] M_{X_{2}} (t_{2} ) = \exp \left[ \mu_{2} t_{2} + {{1} \over {2}} \sigma_{2} t_{2}^{2} \right] If σ12:=cov(X1,X2)\sigma_{12} : = \text{cov} (X_{1} , X_{2} ) and σ21:=cov(X2,X1)\sigma_{21} : = \text{cov} (X_{2} , X_{1} ) then MX1,X2(t1,t2)=exp[μ1t1+μ2t2+12(σ1t12+σ12t1t2+σ21t2t1+σ2t22)] M_{X_{1} , X_{2}} (t_{1} , t_{2} ) = \exp \left[ \mu_{1} t_{1} + \mu_{2} t_{2} + {{1} \over {2}} \left( \sigma_{1} t_{1}^{2} + \sigma_{12} t_{1} t_{2} + \sigma_{21} t_{2} t_{1} + \sigma_{2} t_{2}^{2} \right) \right] Since X1X2X_{1} \perp X_{2}, it follows that MX1,X2(t1,t2)=MX1(t1)MX2(t2)M_{X_{1} , X_{2}} (t_{1} , t_{2} ) = M_{X_{1}} (t_{1} ) M_{X_{2}} ( t_{2} ) . Therefore, exp[μ1t1+μ2t2+12(σ1t12+σ12t1t2+σ21t2t1+σ2t22)]=exp[μ1t1+μ2t2+12(σ1t12+σ2t22)] \begin{align*} & \exp \left[ \mu_{1} t_{1} + \mu_{2} t_{2} + {{1} \over {2}} \left( \sigma_{1} t_{1}^{2} + \sigma_{12} t_{1} t_{2} + \sigma_{21} t_{2} t_{1} + \sigma_{2} t_{2}^{2} \right) \right] \\ =& \exp \left[ \mu_{1} t_{1} + \mu_{2} t_{2} + {{1} \over {2}} \left( \sigma_{1} t_{1}^{2} + \sigma_{2} t_{2}^{2} \right) \right] \end{align*} summarizing, we get σ12+σ21=0\sigma_{12} + \sigma_{21} = 0. Meanwhile, since cov(X1,X2)=cov(X2,X1)\text{cov} (X_{1}, X_{2}) = \text{cov} (X_{2}, X_{1}), σ12=σ21\sigma_{12} = \sigma_{21}, and the system of equations {σ12+σ21=0σ12σ21=0\begin{cases} \sigma_{12} + \sigma_{21} = 0 \\ \sigma_{12} - \sigma_{21} = 0 \end{cases} has only the solution σ12=σ21=0\sigma_{12} = \sigma_{21} = 0.


(    )( \impliedby )

Since σ12=σ21=0\sigma_{12} = \sigma_{21} = 0, σ12t1t2=σ21t2t1=0 \sigma_{12} t_{1} t_{2} = \sigma_{21} t_{2} t_{1} = 0 Therefore, MX1,X2(t1,t2)=MX1(t1)MX2(t2) M_{X_{1} , X_{2}} (t_{1} , t_{2} ) = M_{X_{1}} (t_{1} ) M_{X_{2}} ( t_{2} ) and, the fact that the joint moment generating function can be separated implies independence, thus X1X2X_{1} \perp X_{2}.