logo

Solution to the Initial Value Problem for the Heat Equation Given Dirichlet Boundary Conditions 📂Partial Differential Equations

Solution to the Initial Value Problem for the Heat Equation Given Dirichlet Boundary Conditions

Description

{ut=γuxxu(t,0)=u(t,l)=0u(0,x)=f(x) \begin{cases} u_{t} = \gamma u_{xx} \\ u(t,0) = u(t,l) = 0 \\ u(0,x) = f(x) \end{cases}

The above equation is a Dirichlet boundary condition in a 11-dimensional space with length of ll from Heat Equation

{u(t,0)=α(t)u(t,l)=β(t) \begin{cases} u(t,0) = \alpha (t) \\ u(t,l) = \beta (t) \end{cases}

This is given by α=β=0\alpha = \beta = 0 with initial conditions for the heat distribution. Among such problem types, this is the simplest and easiest form. Here, tt represents time, xx represents position, and u(t,x)u(t,x) represents the distribution of heat at time tt. γ\gamma is the thermal diffusivity, the larger it is, the faster the change in distribution. ff is the initial condition, specifically representing the distribution of heat when t=0t=0.

Solution

Continued from Solution of Heat Equation.


  • Step 4. Check if λ\lambda is an eigenvalue

    With the candidate solution being u(t,x)=eλtv(X)u(t,x) = e^{-\lambda t} v(X), due to Dirichlet boundary condition, it follows that

    eλtv(0)=eλtv(l)=0 e^{-\lambda t} v(0) = e^{-\lambda t} v(l) = 0

    Hence, it’s necessary to verify whether the non-trivial solution vv satisfies v(0)=v(l)=0v(0) = v(l) = 0.

    • Case 1. λ<0\lambda < 0 For some constant c1,c2Cc_{1} , c_{2} \in \mathbb{C},

      v(x)=c1eλγx+c2eλγx v(x) = c_{1} e^{ \sqrt{ -{{\lambda} \over {\gamma}} } x } + c_{2 } e^{ - \sqrt{ -{{\lambda} \over {\gamma}} } x }

      Hence,

      v(0)=0    c1+c2=0v(l)=0    c1eλγl+c2eλγl=0 v(0) = 0 \implies c_{1} + c_{2} = 0 \\ v(l) = 0 \implies c_{1} e^{ \sqrt{ -{{\lambda} \over {\gamma}} } l } + c_{2 } e^{ - \sqrt{ -{{\lambda} \over {\gamma}} } l } = 0

      The only thing satisfying this simultaneously is c1=c2=0c_{1} = c_{2} = 0. Since v(x)=0v(x) = 0, vv becomes a trivial solution, making λ\lambda not an eigenvalue.

    • Case 2. λ=0\lambda = 0

      For some constant c1,c2Cc_{1} , c_{2} \in \mathbb{C}, since v(x)=c1+c2x\displaystyle v(x) = c_{1} + c_{2} x,

      v(0)=0    c1=0v(l)=0    c1+c2l=0 v(0) = 0 \implies c_{1} = 0 \\ v(l) = 0 \implies c_{1} + c_{2 } l = 0

      The only thing satisfying this simultaneously is c1=c2=0c_{1} = c_{2} = 0. Since v(x)=0v(x) = 0, vv becomes a trivial solution, making λ\lambda not an eigenvalue.

    • Case 4. λR\lambda \notin \mathbb{R}

      Let’s express it as λ=reiθ\lambda = r e^{i \theta}. For some constant c1,c2Cc_{1} , c_{2} \in \mathbb{C},

      v(x)=c1exp(rγeiθ2x)+c2exp(rγei(θ2+π)x) v(x) = c_{1} \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{ i {{ \theta } \over {2}} } x \right) + c_{2 } \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{ i \left( {{ \theta } \over {2}} + \pi\right) } x \right)

      Hence, from v(0)=v(l)=0v(0) = v(l) = 0,

      [11exp(rγeiθ2l)exp(rγei(θ2+π)l)][c1c2]=[00] \begin{bmatrix} 1 & 1 \\ \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i {{\theta} \over {2}} } l \right) & \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i \left( {{\theta} \over {2}} + \pi \right) } l \right) \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

      Here,

      det[11exp(rγeiθ2l)exp(rγei(θ2+π)l)]=exp(rγei(θ2+π)l)exp(rγeiθ2l)0 \begin{align*} && \det \begin{bmatrix} 1 & 1 \\ \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i {{\theta} \over {2}} } l \right) & \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i \left( {{\theta} \over {2}} + \pi \right) } l \right) \end{bmatrix} \\ =& \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i \left( {{\theta} \over {2}} + \pi \right) } l \right) - \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i {{\theta} \over {2}} } l \right) \\ &\ne& 0 \end{align*}

      Therefore, c1=c2=0c_{1} = c_{2} = 0 and since v(x)=0v(x) = 0, vv becomes a trivial solution, making λ\lambda not an eigenvalue.

    Hence, in Case 1., Case 2., and Case 4., u(t,x)=0u(t,x) = 0 is found.

    • Case 3. λ>0\lambda > 0

      For some constant c1,c2Cc_{1} , c_{2} \in \mathbb{C},

      v(x)=c1eiλγx+c2eiλγx v(x) = c_{1} e^{ i \sqrt{ -{{\lambda} \over {\gamma}} } x } + c_{2 } e^{ - i \sqrt{ -{{\lambda} \over {\gamma}} } x }

      Hence, from v(0)=v(l)=0v(0) = v(l) = 0,

      [10cos(λγl)sin(λγl)][c1c2]=[00] \begin{bmatrix} 1 & 0 \\ \cos \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right) & \sin \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right) \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

      Here,

      det[10cos(λγl)sin(λγl)]=sin(λγl) \det \begin{bmatrix} 1 & 0 \\ \cos \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right) & \sin \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right) \end{bmatrix} = \sin \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right)

      i.e., only λ=λn:=γ(nπl)2\displaystyle \lambda = \lambda_{n} : = \gamma \left( {{n \pi} \over {l}} \right)^2 that make sin(λγl)=0\displaystyle \sin \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right) = 0 happens are the eigenvalues. In Case 3., we move to Step 5..

  • Step 5.

    Let’s assume that u(t,x):=n=1bnun(t,X)\displaystyle u(t,x) := \sum_{n=1}^{\infty} b_{n} u_{n} (t,X) converges for all x[0,l]x \in [ 0 , l ] when

    un(t,x):=exp(γn2π2l2t)sin(nπxl)bn:=1lllf(x)sin(nπxl)dx u_{n}(t,x) := \exp \left( - {{\gamma n^2 \pi^2 } \over {l^2}} t \right) \sin \left( {{ n \pi x } \over {l}} \right) \\ b_{n} := {{1 } \over {l}} \int_{-l}^{l} f(x) \sin \left( {{ n \pi x } \over {l}} \right) dx

    This solution satisfies the heat equation and meets the Dirichlet boundary conditions. Expanding this:

    u(t,x)=n=1<f(x),sin(nπxl)>exp(γn2π2l2t)sin(nπxl) u(t,x) = \sum_{n=1}^{\infty} \left< f(x) , \sin \left( {{ n \pi x } \over {l}} \right) \right> \exp \left( - {{\gamma n^2 \pi^2 } \over {l^2}} t \right) \sin \left( {{ n \pi x } \over {l}} \right)

    When t=0t=0,

    u(0,x)=n=1<f(x),sin(nπxl)>sin(nπxl)f(x) u(0,x) = \sum_{n=1}^{\infty} \left< f(x) , \sin \left( {{ n \pi x } \over {l}} \right) \right> \sin \left( {{ n \pi x } \over {l}} \right) \sim f(x)

    Therefore, if it converges, the initial condition f(x)=u(0,x)f(x) = u(0,x) is also satisfied.


From a physical sense, it’s obvious that λ\lambda only makes sense when positive during the solution process. Since λ\lambda is a diffusion coefficient, if it could be negative, phenomena violating the Second Law of Thermodynamics would be rampant.

See Also