Solution to the Initial Value Problem for the Heat Equation Given Dirichlet Boundary Conditions
📂Partial Differential Equations Solution to the Initial Value Problem for the Heat Equation Given Dirichlet Boundary Conditions Description { u t = γ u x x u ( t , 0 ) = u ( t , l ) = 0 u ( 0 , x ) = f ( x )
\begin{cases} u_{t} = \gamma u_{xx}
\\ u(t,0) = u(t,l) = 0
\\ u(0,x) = f(x) \end{cases}
⎩ ⎨ ⎧ u t = γ u xx u ( t , 0 ) = u ( t , l ) = 0 u ( 0 , x ) = f ( x )
The above equation is a Dirichlet boundary condition in a 1 1 1 -dimensional space with length of l l l from Heat Equation
{ u ( t , 0 ) = α ( t ) u ( t , l ) = β ( t )
\begin{cases} u(t,0) = \alpha (t) \\ u(t,l) = \beta (t) \end{cases}
{ u ( t , 0 ) = α ( t ) u ( t , l ) = β ( t )
This is given by α = β = 0 \alpha = \beta = 0 α = β = 0 with initial conditions for the heat distribution. Among such problem types, this is the simplest and easiest form. Here, t t t represents time, x x x represents position, and u ( t , x ) u(t,x) u ( t , x ) represents the distribution of heat at time t t t . γ \gamma γ is the thermal diffusivity, the larger it is, the faster the change in distribution. f f f is the initial condition, specifically representing the distribution of heat when t = 0 t=0 t = 0 .
Solution Continued from Solution of Heat Equation .
Step 4. Check if λ \lambda λ is an eigenvalue
With the candidate solution being u ( t , x ) = e − λ t v ( X ) u(t,x) = e^{-\lambda t} v(X) u ( t , x ) = e − λ t v ( X ) , due to Dirichlet boundary condition, it follows that
e − λ t v ( 0 ) = e − λ t v ( l ) = 0
e^{-\lambda t} v(0) = e^{-\lambda t} v(l) = 0
e − λ t v ( 0 ) = e − λ t v ( l ) = 0
Hence, it’s necessary to verify whether the non-trivial solution v v v satisfies v ( 0 ) = v ( l ) = 0 v(0) = v(l) = 0 v ( 0 ) = v ( l ) = 0 .
Case 1. λ < 0 \lambda < 0 λ < 0
For some constant c 1 , c 2 ∈ C c_{1} , c_{2} \in \mathbb{C} c 1 , c 2 ∈ C ,
v ( x ) = c 1 e − λ γ x + c 2 e − − λ γ x
v(x) = c_{1} e^{ \sqrt{ -{{\lambda} \over {\gamma}} } x } + c_{2 } e^{ - \sqrt{ -{{\lambda} \over {\gamma}} } x }
v ( x ) = c 1 e − γ λ x + c 2 e − − γ λ x
Hence,
v ( 0 ) = 0 ⟹ c 1 + c 2 = 0 v ( l ) = 0 ⟹ c 1 e − λ γ l + c 2 e − − λ γ l = 0
v(0) = 0 \implies c_{1} + c_{2} = 0
\\ v(l) = 0 \implies c_{1} e^{ \sqrt{ -{{\lambda} \over {\gamma}} } l } + c_{2 } e^{ - \sqrt{ -{{\lambda} \over {\gamma}} } l } = 0
v ( 0 ) = 0 ⟹ c 1 + c 2 = 0 v ( l ) = 0 ⟹ c 1 e − γ λ l + c 2 e − − γ λ l = 0
The only thing satisfying this simultaneously is c 1 = c 2 = 0 c_{1} = c_{2} = 0 c 1 = c 2 = 0 . Since v ( x ) = 0 v(x) = 0 v ( x ) = 0 , v v v becomes a trivial solution, making λ \lambda λ not an eigenvalue.
Case 2. λ = 0 \lambda = 0 λ = 0
For some constant c 1 , c 2 ∈ C c_{1} , c_{2} \in \mathbb{C} c 1 , c 2 ∈ C , since v ( x ) = c 1 + c 2 x \displaystyle v(x) = c_{1} + c_{2} x v ( x ) = c 1 + c 2 x ,
v ( 0 ) = 0 ⟹ c 1 = 0 v ( l ) = 0 ⟹ c 1 + c 2 l = 0
v(0) = 0 \implies c_{1} = 0
\\ v(l) = 0 \implies c_{1} + c_{2 } l = 0
v ( 0 ) = 0 ⟹ c 1 = 0 v ( l ) = 0 ⟹ c 1 + c 2 l = 0
The only thing satisfying this simultaneously is c 1 = c 2 = 0 c_{1} = c_{2} = 0 c 1 = c 2 = 0 . Since v ( x ) = 0 v(x) = 0 v ( x ) = 0 , v v v becomes a trivial solution, making λ \lambda λ not an eigenvalue.
Case 4. λ ∉ R \lambda \notin \mathbb{R} λ ∈ / R
Let’s express it as λ = r e i θ \lambda = r e^{i \theta} λ = r e i θ . For some constant c 1 , c 2 ∈ C c_{1} , c_{2} \in \mathbb{C} c 1 , c 2 ∈ C ,
v ( x ) = c 1 exp ( r γ e i θ 2 x ) + c 2 exp ( r γ e i ( θ 2 + π ) x )
v(x) = c_{1} \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{ i {{ \theta } \over {2}} } x \right) + c_{2 } \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{ i \left( {{ \theta } \over {2}} + \pi\right) } x \right)
v ( x ) = c 1 exp ( γ r e i 2 θ x ) + c 2 exp ( γ r e i ( 2 θ + π ) x )
Hence, from v ( 0 ) = v ( l ) = 0 v(0) = v(l) = 0 v ( 0 ) = v ( l ) = 0 ,
[ 1 1 exp ( r γ e i θ 2 l ) exp ( r γ e i ( θ 2 + π ) l ) ] [ c 1 c 2 ] = [ 0 0 ]
\begin{bmatrix}
1 & 1
\\ \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i {{\theta} \over {2}} } l \right) & \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i \left( {{\theta} \over {2}} + \pi \right) } l \right)
\end{bmatrix} \begin{bmatrix}
c_{1}
\\ c_{2}
\end{bmatrix} = \begin{bmatrix}
0
\\ 0
\end{bmatrix}
[ 1 exp ( γ r e i 2 θ l ) 1 exp ( γ r e i ( 2 θ + π ) l ) ] [ c 1 c 2 ] = [ 0 0 ]
Here,
det [ 1 1 exp ( r γ e i θ 2 l ) exp ( r γ e i ( θ 2 + π ) l ) ] = exp ( r γ e i ( θ 2 + π ) l ) − exp ( r γ e i θ 2 l ) ≠ 0
\begin{align*}
&& \det \begin{bmatrix}
1 & 1
\\ \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i {{\theta} \over {2}} } l \right) & \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i \left( {{\theta} \over {2}} + \pi \right) } l \right)
\end{bmatrix}
\\ =& \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i \left( {{\theta} \over {2}} + \pi \right) } l \right) - \exp \left( \sqrt{ {{r} \over {\gamma}} } e^{i {{\theta} \over {2}} } l \right)
\\ &\ne& 0
\end{align*}
= exp ( γ r e i ( 2 θ + π ) l ) − exp ( γ r e i 2 θ l ) = det [ 1 exp ( γ r e i 2 θ l ) 1 exp ( γ r e i ( 2 θ + π ) l ) ] 0
Therefore, c 1 = c 2 = 0 c_{1} = c_{2} = 0 c 1 = c 2 = 0 and since v ( x ) = 0 v(x) = 0 v ( x ) = 0 , v v v becomes a trivial solution, making λ \lambda λ not an eigenvalue.
Hence, in Case 1. , Case 2. , and Case 4. , u ( t , x ) = 0 u(t,x) = 0 u ( t , x ) = 0 is found.
Case 3. λ > 0 \lambda > 0 λ > 0
For some constant c 1 , c 2 ∈ C c_{1} , c_{2} \in \mathbb{C} c 1 , c 2 ∈ C ,
v ( x ) = c 1 e i − λ γ x + c 2 e − i − λ γ x
v(x) = c_{1} e^{ i \sqrt{ -{{\lambda} \over {\gamma}} } x } + c_{2 } e^{ - i \sqrt{ -{{\lambda} \over {\gamma}} } x }
v ( x ) = c 1 e i − γ λ x + c 2 e − i − γ λ x
Hence, from v ( 0 ) = v ( l ) = 0 v(0) = v(l) = 0 v ( 0 ) = v ( l ) = 0 ,
[ 1 0 cos ( λ γ l ) sin ( λ γ l ) ] [ c 1 c 2 ] = [ 0 0 ]
\begin{bmatrix}
1 & 0
\\ \cos \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right) & \sin \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right)
\end{bmatrix} \begin{bmatrix}
c_{1}
\\ c_{2}
\end{bmatrix} = \begin{bmatrix}
0
\\ 0
\end{bmatrix}
[ 1 cos ( γ λ l ) 0 sin ( γ λ l ) ] [ c 1 c 2 ] = [ 0 0 ]
Here,
det [ 1 0 cos ( λ γ l ) sin ( λ γ l ) ] = sin ( λ γ l )
\det \begin{bmatrix}
1 & 0
\\ \cos \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right) & \sin \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right)
\end{bmatrix} = \sin \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right)
det [ 1 cos ( γ λ l ) 0 sin ( γ λ l ) ] = sin ( γ λ l )
i.e., only λ = λ n : = γ ( n π l ) 2 \displaystyle \lambda = \lambda_{n} : = \gamma \left( {{n \pi} \over {l}} \right)^2 λ = λ n := γ ( l nπ ) 2 that make sin ( λ γ l ) = 0 \displaystyle \sin \left( \sqrt{ {{ \lambda } \over {\gamma}} } l \right) = 0 sin ( γ λ l ) = 0 happens are the eigenvalues. In Case 3. , we move to Step 5. .
Step 5.
Let’s assume that u ( t , x ) : = ∑ n = 1 ∞ b n u n ( t , X ) \displaystyle u(t,x) := \sum_{n=1}^{\infty} b_{n} u_{n} (t,X) u ( t , x ) := n = 1 ∑ ∞ b n u n ( t , X ) converges for all x ∈ [ 0 , l ] x \in [ 0 , l ] x ∈ [ 0 , l ] when
u n ( t , x ) : = exp ( − γ n 2 π 2 l 2 t ) sin ( n π x l ) b n : = 1 l ∫ − l l f ( x ) sin ( n π x l ) d x
u_{n}(t,x) := \exp \left( - {{\gamma n^2 \pi^2 } \over {l^2}} t \right) \sin \left( {{ n \pi x } \over {l}} \right)
\\ b_{n} := {{1 } \over {l}} \int_{-l}^{l} f(x) \sin \left( {{ n \pi x } \over {l}} \right) dx
u n ( t , x ) := exp ( − l 2 γ n 2 π 2 t ) sin ( l nπ x ) b n := l 1 ∫ − l l f ( x ) sin ( l nπ x ) d x
This solution satisfies the heat equation and meets the Dirichlet boundary conditions. Expanding this:
u ( t , x ) = ∑ n = 1 ∞ < f ( x ) , sin ( n π x l ) > exp ( − γ n 2 π 2 l 2 t ) sin ( n π x l )
u(t,x) = \sum_{n=1}^{\infty} \left< f(x) , \sin \left( {{ n \pi x } \over {l}} \right) \right> \exp \left( - {{\gamma n^2 \pi^2 } \over {l^2}} t \right) \sin \left( {{ n \pi x } \over {l}} \right)
u ( t , x ) = n = 1 ∑ ∞ ⟨ f ( x ) , sin ( l nπ x ) ⟩ exp ( − l 2 γ n 2 π 2 t ) sin ( l nπ x )
When t = 0 t=0 t = 0 ,
u ( 0 , x ) = ∑ n = 1 ∞ < f ( x ) , sin ( n π x l ) > sin ( n π x l ) ∼ f ( x )
u(0,x) = \sum_{n=1}^{\infty} \left< f(x) , \sin \left( {{ n \pi x } \over {l}} \right) \right> \sin \left( {{ n \pi x } \over {l}} \right) \sim f(x)
u ( 0 , x ) = n = 1 ∑ ∞ ⟨ f ( x ) , sin ( l nπ x ) ⟩ sin ( l nπ x ) ∼ f ( x )
Therefore, if it converges, the initial condition f ( x ) = u ( 0 , x ) f(x) = u(0,x) f ( x ) = u ( 0 , x ) is also satisfied.
■
From a physical sense, it’s obvious that λ \lambda λ only makes sense when positive during the solution process. Since λ \lambda λ is a diffusion coefficient, if it could be negative, phenomena violating the Second Law of Thermodynamics would be rampant.
See Also