logo

Methods for Finding the Second Solution of Second Order Differential Equations 📂Odinary Differential Equations

Methods for Finding the Second Solution of Second Order Differential Equations

Description1

y+p(t)y+q(t)y=0 \begin{equation} y^{\prime \prime }+p(t)y^{\prime} + q(t)y=0 \end{equation}

Given the differential equation above, assume we know one solution y1y_{1}. Let’s assume the general solution is y(t)=ν(t)y1(t)y(t)=\nu (t) y_{1}(t). If we calculate the 1st and 2nd derivatives of yy, we get the following.

y=νy1+νy1y=νy1+νy1+νy1+νy1=νy1+2νy1+νy1 \begin{align*} y^{\prime} &= \nu^{\prime} y_{1} + \nu y_{1}^{\prime} \\ y^{\prime \prime} &= \nu ^{\prime \prime}y_{1} + \nu^{\prime} y_{1}^{\prime} + \nu^ \prime y_{1}^{\prime} + \nu y_{1}^{\prime \prime} \\ &= \nu ^{\prime \prime}y_{1} + 2\nu^{\prime} y_{1}^{\prime} + \nu y_{1}^{\prime \prime} \end{align*}

By substituting yy^{\prime} and yy^{\prime \prime} into (1)(1),

νy1+2νy1+νy1+p(νy1+νy1)+qνy1=0 \nu^{\prime \prime}y_{1} + 2\nu^{\prime} y_{1}^{\prime} + \nu y_{1} ^{\prime \prime} + p \left( \nu^{\prime} y_{1} + \nu y_{1}^{\prime} \right) + q\nu y_{1}=0

After arranging for ν\nu,

ν(y1+py1+qy1)+ν(2y1+py1)+νy1=0 \begin{equation} \nu \left( y_{1} ^{\prime \prime} + py_{1}^{\prime} + qy_{1} \right) + \nu^{\prime} \left( 2y_{1}^{\prime} + py_{1} \right) + \nu ^{ \prime \prime} y_{1}=0 \end{equation}

Since y1y_{1} is a solution of (1)(1), it follows that y1+py1+qy=0y_{1}^{\prime \prime} + py_{1}^ \prime + qy=0. Therefore, the first term of (2)(2) is 00, and upon rearranging, ν(2y1+py1)+νy1=0 \nu^{\prime} \left( 2y_{1}^{\prime} + py_{1} \right) + \nu ^{ \prime \prime}y_{1}=0

To reduce the coefficients of the differential equation, let’s substitute with νw\nu^{\prime} \equiv w. Then, the equation becomes a first-order differential equation with reduced coefficients.

w(2y1+py1)+wy1=0 w \left( 2y_{1}^{\prime}+ py_{1} \right) + w^{\prime} y_{1}=0

By solving the newly obtained differential equation for ww using techniques like separation of variables, we can find the second solution and the general solution. Let’s see this through an example.

Example

Find the second solution and the general solution when 2t2y+3tyy=02t^2 y^{\prime \prime} + 3ty^{\prime} –y=0, t>0t>0, y1=t1y_{1}=t^{-1}.

If we assume y=νt1y=\nu t^{-1},

y=νt1νy2y=νt12vt2+2νt3 y^{\prime} = \nu^{\prime} t^{-1} - \nu y^{-2} \\ y^{\prime \prime } = \nu ^{\prime \prime} t^{-1} - 2v^{\prime} t^{-2}+ 2\nu t^{-3}

By substituting into the given differential equation,

2t2(νt1+2νt32νt2)+3t(νt1νt2)νt1=0 2t^2 \left( \nu ^{\prime \prime} t^{-1} + 2\nu t^{-3} - 2\nu^{\prime} t^{-2} \right) +3t \left( \nu^{\prime} t^{-1} - \nu t^{-2} \right) -\nu t^{-1} = 0

After arranging for ν\nu, since the term ν\nu is 00,

2tνν=0 2t\nu^{\prime \prime} -\nu^{\prime} =0

Once we substitute with νw\nu^{\prime} \equiv w,

2tww=0    2tw=0    1wdw=12tdt    lnw=12lnt+C=lnt1/2+C    w=Celnt1/2=Ct1/2    ν=w=Ct1/2    ν=23Ct32+k \begin{align*} && 2tw^{\prime} –w&=0 \\ \implies && 2t w^{\prime} &=0 \\ \implies && \dfrac{1}{w}dw &= \dfrac{1}{2t}dt \\ \implies && \ln w &= \dfrac{1}{2} \ln t + C = \ln t ^{1/2} +C \\ \implies && w &= Ce^{\ln t^{1/2}} = Ct^{1/2} \\ \implies && \nu^{\prime} &= w=Ct^{1/2} \\ \implies && \nu &= \frac{2}{3}Ct^{\frac{3}{2}} + k \end{align*}

Therefore, y=νy1=νt1y=\nu y_{1}=\nu t^{-1},

y=(23Ct32+k)t1    y=23Ct12+kt1 \begin{align*} && y &=\left( \frac{2}{3}Ct^{\frac{3}{2}} + k \right) t^{-1} \\ \implies && y&=\frac{2}{3}Ct^{\frac{1}{2}} + kt^{-1} \end{align*}


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p127-133 ↩︎