Proof of the Power Formula for Rotation Transformation Matrices
📂Matrix AlgebraProof of the Power Formula for Rotation Transformation Matrices
Theorem
For every natural number n, the following holds.
[cosθsinθ−sinθcosθ]n=[cosnθsinnθ−sinnθcosnθ]
Explanation
A linear transformation matrix that rotates by θ around the origin, when squared, results in a linear transformation that rotates by nθ.
Proof
Strategy: It’s intuitively obvious, and can be easily proven using mathematical induction.
(ㄱ):[cosθsinθ−sinθcosθ]n=[cosnθsinnθ−sinnθcosnθ]
When n=1,
[cosθsinθ−sinθcosθ]=[cosθsinθ−sinθcosθ]
Therefore, condition (ㄱ) is satisfied. Now, assuming condition (ㄱ) holds when n=k,
[cosθsinθ−sinθcosθ]k=[coskθsinkθ−sinkθcoskθ]
Multiplying both sides by [cosθsinθ−sinθcosθ] results in
[cosθsinθ−sinθcosθ]k+1===[coskθsinkθ−sinkθcoskθ][cosθsinθ−sinθcosθ][coskθcosθ−sinkθsinθsinkθcosθ+coskθsinθ−(sinkθcosθ+coskθsinθ)coskθcosθ−sinkθsinθ][cos(k+1)θsin(k+1)θ−sin(k+1)θcos(k+1)θ]
Therefore, condition (ㄱ) is satisfied.
■