logo

Solution to Second Order Homogeneous Differential Equations 📂Odinary Differential Equations

Solution to Second Order Homogeneous Differential Equations

Theorem1

ay+by+cy=0 ay^{\prime \prime} + by^\prime + cy=0

Let’s say the solutions to the characteristic equation ar2+br+c=0ar^2+br+c=0 given above are r1r_{1} and r2r_2. Then,

1.\text{1.} If r1r_{1} and r2r_2 are two distinct real numbers(b24ac>0)(b^2-4ac>0), the general solution is as follows: y(t)=c1er1t+c2er2t y(t)=c_{1}e^{r_{1}t}+c_2e^{r_2t}

2.\text{2.} If r1r_{1} and r2r_2 are complex conjugates λ±iμ\lambda \pm i \mu(b24ac<0)(b^2-4ac<0), the general solution is as follows: y(t)=c1e(λ+iμ)t+c2e(λiμ)t=c3eλtcosμt+c4eλtsinμt \begin{align*} y(t) &= c_{1}e^{(\lambda + i\mu)t} + c_2e^{(\lambda – i\mu)t} \\ &= c_{3}e^{\lambda t} \cos \mu t + c_{4} e^{\lambda t} \sin \mu t \end{align*}

3.\text{3.} In the case of r1=r2=rr_{1}=r_2=r(b24ac=0)(b^2-4ac=0), the general solution is as follows: y(t)=c1ert+c2tert y(t)=c_{1}e^{rt}+c_2te^{rt}

Solution

1. If r1r2r_{1} \ne r_2 and r1,r2Rr_{1}, r_2\in \mathbb{R}

The general solution is as follows:

y(t)=c1er1t+c2er2t y(t)=c_{1}e^{r_{1}t}+c_2e^{r_2t}

Here, c1,c2c_{1}, c_2 is a constant, and if we know the two initial values y(0)=y0y(0)=y_{0} and y(0)=y0y^\prime (0) =y^\prime_{0}, we can determine it exactly.

2. If r1r2r_{1} \ne r_2 and r1,r2Cr_{1}, r_2 \in \mathbb{C}

In the case where the discriminant of the characteristic equation is b24ac<0b^2-4ac<0. Since r1r_{1} and r2r_2 become complex conjugates, it can be expressed as follows:

r1=λ+iμ,r2=λiμ r_{1}=\lambda + i\mu,\quad r_2=\lambda – i\mu

Then, the two solutions of the differential equation are as follows:

y1=er1t=e(λ+iμ)t,y2=e(λiμ)t y_{1}=e^{r_{1}t}=e^{(\lambda + i\mu)t}, y_{2}=e^{(\lambda – i\mu)t}

Therefore, the general solution is as follows:

y(t)=c1e(λ+iμ)t+c2e(λiμ)t y(t)=c_{1}e^{(\lambda + i\mu)t} + c_2e^{(\lambda – i\mu)t}

Up to here, it is not particularly different from 1. If we represent the general solution using the Euler’s formula, then

 c1e(λ+iμ)t+c2e(λiμ)t= c1eλt(cosμt+isinμt)+c2eλt(cosμtisinμt)= c3eλcosμt+c4eλsinμt \begin{align*} &\ c_{1}e^{(\lambda + i\mu)t} + c_2e^{(\lambda – i\mu)t} \\ =&\ c_{1} e^{\lambda t} (\cos \mu t + i\sin \mu t) + c_2 e^{\lambda t} ( \cos \mu t – i \sin \mu t) \\ =&\ c_{3}e^\lambda \cos \mu t + c_{4} e^\lambda \sin \mu t \end{align*}

Therefore,

y(t)=c3eλtcosμt+c4eλtsinμt y(t)=c_{3}e^{\lambda t} \cos \mu t + c_{4} e^{\lambda t} \sin \mu t

At this time, c4c_{4} is a complex constant including ii. If we know the initial values, we can determine c3c_{3} and c4c_{4} exactly.

3. If r1=r2=r=b2ar_{1}=r_2=r=-\dfrac{b}{2a}

In the case where the discriminant of the characteristic equation is b24ac=0b^2-4ac=0. y1y_{1} can be found by y1=eb2aty_{1}=e^{\frac{-b}{2a}t}, but y2y_{2} cannot be found. Assume y2y_{2} as y(t)=ν(t)y1(t)y(t)=\nu (t) y_{1}(t), then

y=νy1+νy1y=νy1+νy1+νy1+νy1=νy1+2νy1+νy1 \begin{align*} y^\prime &= \nu ^\prime y_{1} + \nu y_{1}^\prime \\ y^{\prime \prime}&=\nu^{\prime \prime}y_{1} +\nu ^\prime y_{1}^\prime + \nu^\prime y_{1}^\prime + \nu y_{1}^{\prime \prime}=\nu^{\prime \prime}y_{1}+2\nu ^\prime y_{1}^\prime+ \nu y_{1}^{\prime \prime} \end{align*}

Substituting yy^\prime and yy^{\prime \prime} into the given differential equation gives

a(νy1+2νy1+νy1)+b(νy1+νy1)+cνy1=0 a \left( \nu^{\prime \prime}y_{1}+2\nu ^\prime y_{1}^\prime+ \nu y_{1}^{\prime \prime} \right) + b \left( \nu ^\prime y_{1} + \nu y_{1}^\prime \right) + c\nu y_{1}=0

Organizing it according to ν\nu turns out as follows:

ν(ay1+by1+cy1)+ν(2ay1+by1)+ay1ν=0 \nu \left( ay_{1}^{\prime \prime} + b y_{1}^{\prime} + cy_{1}\right) + \nu^\prime \left( 2ay_{1}^\prime+by_{1} \right) + ay_{1} \nu ^{\prime \prime}=0

Here, since y1y_{1} is a solution to the given differential equation, the first parenthesis is 00. Also, since y1=e(b/2a)ty_{1}=e^{(-b/{2a})t} and y1=b2ae(b/2a)ty_{1}^\prime = \frac{-b}{2a}e^{({-b}/{2a})t},

ν(2ab2aeb2at+beb2at)+aeb2atν=0    ν(b+b)+aν=0    ν=0 \begin{align*} &&\nu^\prime \left( 2a \dfrac{-b}{2a}e^{\frac{-b}{2a}t} + b e^{\frac{-b}{2a}t} \right) + ae^{\frac{-b}{2a}t} \nu ^{\prime \prime}&=0 \\ \implies&& \nu^\prime(-b+b)+a\nu^{\prime \prime}&=0 \\ \implies && \nu^{\prime \prime} &=0 \end{align*}

Therefore, it turns out that ν(t)=c1+c2t\nu (t)=c_{1}+c_2t. Ultimately, the general solution to the given differential equation is

y(t)=ν(t)y1(t)=c1y1(t)+c2ty1(t)=c1ert+c2tert y(t)=\nu (t) y_{1}(t)=c_{1}y_{1}(t)+c_2ty_{1}(t)=c_{1}e^{rt}+c_2te^{rt}

In other words, it turns out to be y2=ty1y_{2}=ty_{1}.

Examples

1.

y+5y+6y=0y(0)=2y(0)=3 y^{\prime \prime}+ 5y^\prime + 6y=0 \\ y(0)=2 \\ y^\prime (0)=3

The characteristic equation is r2+5r+6=0r^2+5r+6=0. That is (r+2)(r+3)=0(r+2)(r+3)=0, so r1=2r_{1}=-2, r2=3r_2=-3. Therefore, the general solution is

y(t)=c1e2t+c2e3t y(t)=c_{1}e^{-2t}+c_2e^{-3t}

Differentiating the general solution gives

y(t)=2c1e2t3c2e3t y^\prime(t)=-2c_{1}e^{-2t} -3c_2e^{-3t}

Substituting the initial values gives

{c1+c2=22c13c2=3 \begin{cases} c_{1}+c_2=2 \\ -2c_{1}-3c_2=3 \end{cases}

Solving them together gives

c1=9,c2=7 c_{1}=9,\quad c_2=7

Therefore, the solution for the given initial values is

y(t)=9e2t+7e3t y(t)=9e^{-2t}+7e^{-3t}

2.

y+4y+8y=0 y^{\prime \prime}+4y^\prime + 8y=0

The characteristic equation is

r2+4r+8=0 r^2+4r+8=0

The solutions of the characteristic equation are

r1,2=4±16322=2±2i r_{1,2}= \dfrac{-4\pm \sqrt{16-32}}{2}=-2 \pm 2i

So λ=2\lambda=-2, μ=2\mu=2. Therefore, the general solution for the given differential equation is

y(t)=c1e2tcos2t+c2e2tsin2t y(t)=c_{1}e^{-2t}\cos 2t + c_2 e^{-2t} \sin 2t

3.

y+4y+4y=0 y^{\prime \prime} + 4y^\prime + 4y=0

The characteristic equation is

r2+4r+4=(r+2)2=0 r^2+4r+4=(r+2)^2=0

The solutions of the characteristic equation are

r=2 r=-2

Therefore, it turns out y1(t)=e2ty_{1}(t)=e^{-2t} and the general solution is

y(t)=c1e2t+c2te2t y(t)=c_{1}e^{-2t} + c_2te^{-2t}


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p120-133 ↩︎