Solution to Second Order Homogeneous Differential Equations
📂Odinary Differential Equations Solution to Second Order Homogeneous Differential Equations Theorem a y ′ ′ + b y ′ + c y = 0
ay^{\prime \prime} + by^\prime + cy=0
a y ′′ + b y ′ + cy = 0
Let’s say the solutions to the characteristic equation a r 2 + b r + c = 0 ar^2+br+c=0 a r 2 + b r + c = 0 given above are r 1 r_{1} r 1 and r 2 r_2 r 2 . Then,
1. \text{1.} 1. If r 1 r_{1} r 1 and r 2 r_2 r 2 are two distinct real numbers( b 2 − 4 a c > 0 ) (b^2-4ac>0) ( b 2 − 4 a c > 0 ) , the general solution is as follows:
y ( t ) = c 1 e r 1 t + c 2 e r 2 t
y(t)=c_{1}e^{r_{1}t}+c_2e^{r_2t}
y ( t ) = c 1 e r 1 t + c 2 e r 2 t
2. \text{2.} 2. If r 1 r_{1} r 1 and r 2 r_2 r 2 are complex conjugates λ ± i μ \lambda \pm i \mu λ ± i μ ( b 2 − 4 a c < 0 ) (b^2-4ac<0) ( b 2 − 4 a c < 0 ) , the general solution is as follows:
y ( t ) = c 1 e ( λ + i μ ) t + c 2 e ( λ – i μ ) t = c 3 e λ t cos μ t + c 4 e λ t sin μ t
\begin{align*}
y(t) &= c_{1}e^{(\lambda + i\mu)t} + c_2e^{(\lambda – i\mu)t}
\\ &= c_{3}e^{\lambda t} \cos \mu t + c_{4} e^{\lambda t} \sin \mu t
\end{align*}
y ( t ) = c 1 e ( λ + i μ ) t + c 2 e ( λ – i μ ) t = c 3 e λ t cos μ t + c 4 e λ t sin μ t
3. \text{3.} 3. In the case of r 1 = r 2 = r r_{1}=r_2=r r 1 = r 2 = r ( b 2 − 4 a c = 0 ) (b^2-4ac=0) ( b 2 − 4 a c = 0 ) , the general solution is as follows:
y ( t ) = c 1 e r t + c 2 t e r t
y(t)=c_{1}e^{rt}+c_2te^{rt}
y ( t ) = c 1 e r t + c 2 t e r t
Solution 1. If r 1 ≠ r 2 r_{1} \ne r_2 r 1 = r 2 and r 1 , r 2 ∈ R r_{1}, r_2\in \mathbb{R} r 1 , r 2 ∈ R The general solution is as follows:
y ( t ) = c 1 e r 1 t + c 2 e r 2 t
y(t)=c_{1}e^{r_{1}t}+c_2e^{r_2t}
y ( t ) = c 1 e r 1 t + c 2 e r 2 t
Here, c 1 , c 2 c_{1}, c_2 c 1 , c 2 is a constant, and if we know the two initial values y ( 0 ) = y 0 y(0)=y_{0} y ( 0 ) = y 0 and y ′ ( 0 ) = y 0 ′ y^\prime (0) =y^\prime_{0} y ′ ( 0 ) = y 0 ′ , we can determine it exactly.
■
2. If r 1 ≠ r 2 r_{1} \ne r_2 r 1 = r 2 and r 1 , r 2 ∈ C r_{1}, r_2 \in \mathbb{C} r 1 , r 2 ∈ C In the case where the discriminant of the characteristic equation is b 2 − 4 a c < 0 b^2-4ac<0 b 2 − 4 a c < 0 . Since r 1 r_{1} r 1 and r 2 r_2 r 2 become complex conjugates, it can be expressed as follows:
r 1 = λ + i μ , r 2 = λ – i μ
r_{1}=\lambda + i\mu,\quad r_2=\lambda – i\mu
r 1 = λ + i μ , r 2 = λ – i μ
Then, the two solutions of the differential equation are as follows:
y 1 = e r 1 t = e ( λ + i μ ) t , y 2 = e ( λ – i μ ) t
y_{1}=e^{r_{1}t}=e^{(\lambda + i\mu)t}, y_{2}=e^{(\lambda – i\mu)t}
y 1 = e r 1 t = e ( λ + i μ ) t , y 2 = e ( λ – i μ ) t
Therefore, the general solution is as follows:
y ( t ) = c 1 e ( λ + i μ ) t + c 2 e ( λ – i μ ) t
y(t)=c_{1}e^{(\lambda + i\mu)t} + c_2e^{(\lambda – i\mu)t}
y ( t ) = c 1 e ( λ + i μ ) t + c 2 e ( λ – i μ ) t
Up to here, it is not particularly different from 1. If we represent the general solution using the Euler’s formula , then
c 1 e ( λ + i μ ) t + c 2 e ( λ – i μ ) t = c 1 e λ t ( cos μ t + i sin μ t ) + c 2 e λ t ( cos μ t – i sin μ t ) = c 3 e λ cos μ t + c 4 e λ sin μ t
\begin{align*}
&\ c_{1}e^{(\lambda + i\mu)t} + c_2e^{(\lambda – i\mu)t} \\
=&\ c_{1} e^{\lambda t} (\cos \mu t + i\sin \mu t) + c_2 e^{\lambda t} ( \cos \mu t – i \sin \mu t) \\
=&\ c_{3}e^\lambda \cos \mu t + c_{4} e^\lambda \sin \mu t
\end{align*}
= = c 1 e ( λ + i μ ) t + c 2 e ( λ – i μ ) t c 1 e λ t ( cos μ t + i sin μ t ) + c 2 e λ t ( cos μ t – i sin μ t ) c 3 e λ cos μ t + c 4 e λ sin μ t
Therefore,
y ( t ) = c 3 e λ t cos μ t + c 4 e λ t sin μ t
y(t)=c_{3}e^{\lambda t} \cos \mu t + c_{4} e^{\lambda t} \sin \mu t
y ( t ) = c 3 e λ t cos μ t + c 4 e λ t sin μ t
At this time, c 4 c_{4} c 4 is a complex constant including i i i . If we know the initial values, we can determine c 3 c_{3} c 3 and c 4 c_{4} c 4 exactly.
■
3. If r 1 = r 2 = r = − b 2 a r_{1}=r_2=r=-\dfrac{b}{2a} r 1 = r 2 = r = − 2 a b In the case where the discriminant of the characteristic equation is b 2 − 4 a c = 0 b^2-4ac=0 b 2 − 4 a c = 0 . y 1 y_{1} y 1 can be found by y 1 = e − b 2 a t y_{1}=e^{\frac{-b}{2a}t} y 1 = e 2 a − b t , but y 2 y_{2} y 2 cannot be found. Assume y 2 y_{2} y 2 as y ( t ) = ν ( t ) y 1 ( t ) y(t)=\nu (t) y_{1}(t) y ( t ) = ν ( t ) y 1 ( t ) , then
y ′ = ν ′ y 1 + ν y 1 ′ y ′ ′ = ν ′ ′ y 1 + ν ′ y 1 ′ + ν ′ y 1 ′ + ν y 1 ′ ′ = ν ′ ′ y 1 + 2 ν ′ y 1 ′ + ν y 1 ′ ′
\begin{align*}
y^\prime &= \nu ^\prime y_{1} + \nu y_{1}^\prime
\\ y^{\prime \prime}&=\nu^{\prime \prime}y_{1} +\nu ^\prime y_{1}^\prime + \nu^\prime y_{1}^\prime + \nu y_{1}^{\prime \prime}=\nu^{\prime \prime}y_{1}+2\nu ^\prime y_{1}^\prime+ \nu y_{1}^{\prime \prime}
\end{align*}
y ′ y ′′ = ν ′ y 1 + ν y 1 ′ = ν ′′ y 1 + ν ′ y 1 ′ + ν ′ y 1 ′ + ν y 1 ′′ = ν ′′ y 1 + 2 ν ′ y 1 ′ + ν y 1 ′′
Substituting y ′ y^\prime y ′ and y ′ ′ y^{\prime \prime} y ′′ into the given differential equation gives
a ( ν ′ ′ y 1 + 2 ν ′ y 1 ′ + ν y 1 ′ ′ ) + b ( ν ′ y 1 + ν y 1 ′ ) + c ν y 1 = 0
a \left( \nu^{\prime \prime}y_{1}+2\nu ^\prime y_{1}^\prime+ \nu y_{1}^{\prime \prime} \right) + b \left( \nu ^\prime y_{1} + \nu y_{1}^\prime \right) + c\nu y_{1}=0
a ( ν ′′ y 1 + 2 ν ′ y 1 ′ + ν y 1 ′′ ) + b ( ν ′ y 1 + ν y 1 ′ ) + c ν y 1 = 0
Organizing it according to ν \nu ν turns out as follows:
ν ( a y 1 ′ ′ + b y 1 ′ + c y 1 ) + ν ′ ( 2 a y 1 ′ + b y 1 ) + a y 1 ν ′ ′ = 0
\nu \left( ay_{1}^{\prime \prime} + b y_{1}^{\prime} + cy_{1}\right) + \nu^\prime \left( 2ay_{1}^\prime+by_{1} \right) + ay_{1} \nu ^{\prime \prime}=0
ν ( a y 1 ′′ + b y 1 ′ + c y 1 ) + ν ′ ( 2 a y 1 ′ + b y 1 ) + a y 1 ν ′′ = 0
Here, since y 1 y_{1} y 1 is a solution to the given differential equation, the first parenthesis is 0 0 0 . Also, since y 1 = e ( − b / 2 a ) t y_{1}=e^{(-b/{2a})t} y 1 = e ( − b / 2 a ) t and y 1 ′ = − b 2 a e ( − b / 2 a ) t y_{1}^\prime = \frac{-b}{2a}e^{({-b}/{2a})t} y 1 ′ = 2 a − b e ( − b / 2 a ) t ,
ν ′ ( 2 a − b 2 a e − b 2 a t + b e − b 2 a t ) + a e − b 2 a t ν ′ ′ = 0 ⟹ ν ′ ( − b + b ) + a ν ′ ′ = 0 ⟹ ν ′ ′ = 0
\begin{align*}
&&\nu^\prime \left( 2a \dfrac{-b}{2a}e^{\frac{-b}{2a}t} + b e^{\frac{-b}{2a}t} \right) + ae^{\frac{-b}{2a}t} \nu ^{\prime \prime}&=0
\\ \implies&& \nu^\prime(-b+b)+a\nu^{\prime \prime}&=0
\\ \implies && \nu^{\prime \prime} &=0
\end{align*}
⟹ ⟹ ν ′ ( 2 a 2 a − b e 2 a − b t + b e 2 a − b t ) + a e 2 a − b t ν ′′ ν ′ ( − b + b ) + a ν ′′ ν ′′ = 0 = 0 = 0
Therefore, it turns out that ν ( t ) = c 1 + c 2 t \nu (t)=c_{1}+c_2t ν ( t ) = c 1 + c 2 t . Ultimately, the general solution to the given differential equation is
y ( t ) = ν ( t ) y 1 ( t ) = c 1 y 1 ( t ) + c 2 t y 1 ( t ) = c 1 e r t + c 2 t e r t
y(t)=\nu (t) y_{1}(t)=c_{1}y_{1}(t)+c_2ty_{1}(t)=c_{1}e^{rt}+c_2te^{rt}
y ( t ) = ν ( t ) y 1 ( t ) = c 1 y 1 ( t ) + c 2 t y 1 ( t ) = c 1 e r t + c 2 t e r t
In other words, it turns out to be y 2 = t y 1 y_{2}=ty_{1} y 2 = t y 1 .
■
Examples 1. y ′ ′ + 5 y ′ + 6 y = 0 y ( 0 ) = 2 y ′ ( 0 ) = 3
y^{\prime \prime}+ 5y^\prime + 6y=0
\\ y(0)=2
\\ y^\prime (0)=3
y ′′ + 5 y ′ + 6 y = 0 y ( 0 ) = 2 y ′ ( 0 ) = 3
The characteristic equation is r 2 + 5 r + 6 = 0 r^2+5r+6=0 r 2 + 5 r + 6 = 0 . That is ( r + 2 ) ( r + 3 ) = 0 (r+2)(r+3)=0 ( r + 2 ) ( r + 3 ) = 0 , so r 1 = − 2 r_{1}=-2 r 1 = − 2 , r 2 = − 3 r_2=-3 r 2 = − 3 . Therefore, the general solution is
y ( t ) = c 1 e − 2 t + c 2 e − 3 t
y(t)=c_{1}e^{-2t}+c_2e^{-3t}
y ( t ) = c 1 e − 2 t + c 2 e − 3 t
Differentiating the general solution gives
y ′ ( t ) = − 2 c 1 e − 2 t − 3 c 2 e − 3 t
y^\prime(t)=-2c_{1}e^{-2t} -3c_2e^{-3t}
y ′ ( t ) = − 2 c 1 e − 2 t − 3 c 2 e − 3 t
Substituting the initial values gives
{ c 1 + c 2 = 2 − 2 c 1 − 3 c 2 = 3
\begin{cases} c_{1}+c_2=2
\\ -2c_{1}-3c_2=3 \end{cases}
{ c 1 + c 2 = 2 − 2 c 1 − 3 c 2 = 3
Solving them together gives
c 1 = 9 , c 2 = 7
c_{1}=9,\quad c_2=7
c 1 = 9 , c 2 = 7
Therefore, the solution for the given initial values is
y ( t ) = 9 e − 2 t + 7 e − 3 t
y(t)=9e^{-2t}+7e^{-3t}
y ( t ) = 9 e − 2 t + 7 e − 3 t
■
2. y ′ ′ + 4 y ′ + 8 y = 0
y^{\prime \prime}+4y^\prime + 8y=0
y ′′ + 4 y ′ + 8 y = 0
The characteristic equation is
r 2 + 4 r + 8 = 0
r^2+4r+8=0
r 2 + 4 r + 8 = 0
The solutions of the characteristic equation are
r 1 , 2 = − 4 ± 16 − 32 2 = − 2 ± 2 i
r_{1,2}= \dfrac{-4\pm \sqrt{16-32}}{2}=-2 \pm 2i
r 1 , 2 = 2 − 4 ± 16 − 32 = − 2 ± 2 i
So λ = − 2 \lambda=-2 λ = − 2 , μ = 2 \mu=2 μ = 2 . Therefore, the general solution for the given differential equation is
y ( t ) = c 1 e − 2 t cos 2 t + c 2 e − 2 t sin 2 t
y(t)=c_{1}e^{-2t}\cos 2t + c_2 e^{-2t} \sin 2t
y ( t ) = c 1 e − 2 t cos 2 t + c 2 e − 2 t sin 2 t
■
3. y ′ ′ + 4 y ′ + 4 y = 0
y^{\prime \prime} + 4y^\prime + 4y=0
y ′′ + 4 y ′ + 4 y = 0
The characteristic equation is
r 2 + 4 r + 4 = ( r + 2 ) 2 = 0
r^2+4r+4=(r+2)^2=0
r 2 + 4 r + 4 = ( r + 2 ) 2 = 0
The solutions of the characteristic equation are
r = − 2
r=-2
r = − 2
Therefore, it turns out y 1 ( t ) = e − 2 t y_{1}(t)=e^{-2t} y 1 ( t ) = e − 2 t and the general solution is
y ( t ) = c 1 e − 2 t + c 2 t e − 2 t
y(t)=c_{1}e^{-2t} + c_2te^{-2t}
y ( t ) = c 1 e − 2 t + c 2 t e − 2 t
■