Solution to the Inhomogeneous Progressive Wave Partial Differential Equation
📂Partial Differential Equations Solution to the Inhomogeneous Progressive Wave Partial Differential Equation Definition The following formula is referred to as a non-uniform traveling wave if it satisfies u u u :
{ u t + c ( x ) u x = 0 , t > 0 u ( t , x ) = f ( x ) , t = 0
\begin{cases} u_{t} + c(x) u_{x} = 0 & , t>0 \\ u(t,x) = f(x) & , t=0 \end{cases}
{ u t + c ( x ) u x = 0 u ( t , x ) = f ( x ) , t > 0 , t = 0
Here, t t t represents time, x x x represents position, and u ( t , x ) u(t,x) u ( t , x ) represents the waveform at position x x x at time t t t . f f f represents the initial condition, particularly the waveform at t = 0 t=0 t = 0 . The function c ( x ) c(x) c ( x ) represents the speed of the wave’s propagation.
Description
A non-uniform traveling wave is a wave whose speed varies over time. In the case of the above figure, the speed decreases over time, leading to a waveform that eventually spikes at a single point.
If c c c is constant, it becomes the uniform traveling wave partial differential equation . If a solution to the non-uniform traveling wave partial differential equation exists, the solution is as follows:
Solution Step 1. Assume that characteristic curves exist, so that x = x ( t ) x = x(t) x = x ( t ) , which means h ( t ) = u ( t , x ( t ) ) h(t) = u(t, x(t)) h ( t ) = u ( t , x ( t )) .
By the chain rule of multivariable functions,
d h d t = ∂ u ∂ t d t d t + ∂ u ∂ x d x d t = u t + d x d t u x
\displaystyle {{ dh } \over { dt }} = {{\partial u} \over {\partial t}} {{d t} \over {d t}} + {{\partial u } \over {\partial x }} {{d x } \over {d t }} = u_{t} + {{dx} \over {dt}} u_{x}
d t d h = ∂ t ∂ u d t d t + ∂ x ∂ u d t d x = u t + d t d x u x
Here, let’s set
c ( x ) = d x d t ⟹ 1 c ( x ) d x = d t
\displaystyle c(x) = {{dx} \over {dt}} \implies {{ 1 } \over { c(x) }} dx = dt
c ( x ) = d t d x ⟹ c ( x ) 1 d x = d t
Step 2. Find the characteristic curve β ( x ) = t \beta (x) = t β ( x ) = t .
Integrating the obtained formula gives ∫ 1 c ( x ) d x = ∫ d t = t \displaystyle \int {{ 1 } \over { c(x) }} dx = \int dt = t ∫ c ( x ) 1 d x = ∫ d t = t , so let β ( x ) = ∫ 1 c ( x ) d x \displaystyle \beta (x) = \int {{ 1 } \over { c(x) }} dx β ( x ) = ∫ c ( x ) 1 d x .
Step 3. Determine β − 1 ( t ) = x \beta^{-1} (t ) = x β − 1 ( t ) = x .
Since characteristic curves never intersect, the inverse function exists.
Step 4. Let be u ( t , x ) : = f ( β − 1 ( β ( x ) − t ) ) u(t,x) := f( \beta^{-1 } ( \beta ( x ) -t ) ) u ( t , x ) := f ( β − 1 ( β ( x ) − t )) .
Then,
u t = f ′ ( β − 1 ( β ( x ) − t ) ) ( β − 1 ) ′ ( β ( x ) − t ) ⋅ ( − 1 )
u_{t} = f ' ( \beta^{-1 } ( \beta (x ) - t ) ) (\beta^{-1})' ( \beta (x) - t ) \cdot (-1)
u t = f ′ ( β − 1 ( β ( x ) − t )) ( β − 1 ) ′ ( β ( x ) − t ) ⋅ ( − 1 )
And
u x = f ′ ( β − 1 ( β ( x ) − t ) ) ( β − 1 ) ′ ( β ( x ) − t ) ⋅ β ′ ( x )
u_{x} = f ' ( \beta^{-1 } ( \beta (x ) - t ) ) (\beta^{-1})' ( \beta (x) - t ) \cdot \beta ' (x)
u x = f ′ ( β − 1 ( β ( x ) − t )) ( β − 1 ) ′ ( β ( x ) − t ) ⋅ β ′ ( x )
By the definition of characteristic curves, since β ′ ( x ) = 1 c ( x ) \displaystyle \beta ' (x) = {{1} \over {c(x)}} β ′ ( x ) = c ( x ) 1 ,
u t + c ( x ) u x = − f ′ ( β − 1 ( β ( x ) − t ) ) ( β − 1 ) ′ ( β ( x ) − t ) + c ( x ) f ′ ( β − 1 ( β ( x ) − t ) ) ( β − 1 ) ′ ( β ( x ) − t ) 1 c ( x ) = 0
\begin{align*}
\\ &u_{t} + c(x) u_{x}
\\ =&- f ' ( \beta^{-1 } ( \beta (x ) - t ) ) (\beta^{-1})' ( \beta (x) - t ) + c(x) f ' ( \beta^{-1 } ( \beta (x ) - t ) ) (\beta^{-1})' ( \beta (x) - t ) {{1} \over {c(x)}}
\\ =& 0
\end{align*}
= = u t + c ( x ) u x − f ′ ( β − 1 ( β ( x ) − t )) ( β − 1 ) ′ ( β ( x ) − t ) + c ( x ) f ′ ( β − 1 ( β ( x ) − t )) ( β − 1 ) ′ ( β ( x ) − t ) c ( x ) 1 0
Therefore, u ( t , x ) = f ( β − 1 ( β ( x ) − t ) ) u(t,x) = f( \beta^{-1 } ( \beta ( x ) -t ) ) u ( t , x ) = f ( β − 1 ( β ( x ) − t )) is the solution to the non-uniform traveling wave differential equation.
■
Example Find the solution to { u t + ( x 2 − 1 ) u x = 0 , t > 0 u ( t , x ) = e − x 2 , t = 0 \begin{cases} u_{t} + (x^2 - 1) u_{x} = 0 & , t> 0 \\ u(t,x) = e^{-x^2} & , t = 0 \end{cases} { u t + ( x 2 − 1 ) u x = 0 u ( t , x ) = e − x 2 , t > 0 , t = 0 . In x = ± 1 x = \pm 1 x = ± 1 , since c ( x ) = x 2 − 1 = 0 c(x) = x^2 - 1 = 0 c ( x ) = x 2 − 1 = 0 , it becomes the standing wave partial differential equation, so u ( t , x ) = u ( 0 , x ) = f ( x ) = e − x 2 u(t,x) = u(0,x) = f(x) = e^{-x^2} u ( t , x ) = u ( 0 , x ) = f ( x ) = e − x 2 . In x ≠ ± 1 x \ne \pm 1 x = ± 1 , find the characteristic curve
t = b e t a ( x ) = ∫ 1 x 2 − 1 d x = 1 2 log ∣ x − 1 x + 1 ∣
t = beta (x) = \int {{1} \over {x^2 - 1}} dx = {{1 } \over {2}} \log \left| {{x-1} \over {x+1}} \right|
t = b e t a ( x ) = ∫ x 2 − 1 1 d x = 2 1 log x + 1 x − 1
And since x = β − 1 ( t ) = 1 + e 2 t 1 − e 2 t \displaystyle x= \beta^{-1} (t) = {{1 + e^{2t}} \over {1 - e^{2t}}} x = β − 1 ( t ) = 1 − e 2 t 1 + e 2 t ,
u ( t , x ) = f ( β − 1 ( β ( x ) − t ) ) = exp [ − ( x + 1 + ( x − 1 ) e − 2 t x + 1 − ( x − 1 ) e − 2 t ) 2 ]
u(t,x) = f(\beta^{-1} ( \beta (x) - t ) ) = \exp \left[ - \left( {{ x + 1 + (x - 1) e^{-2t} } \over { x + 1 - (x - 1) e^{-2t} }} \right)^2 \right]
u ( t , x ) = f ( β − 1 ( β ( x ) − t )) = exp [ − ( x + 1 − ( x − 1 ) e − 2 t x + 1 + ( x − 1 ) e − 2 t ) 2 ]
■