logo

Solutions to the Partial Differential Equations of Uniformly Progressive Waves 📂Partial Differential Equations

Solutions to the Partial Differential Equations of Uniformly Progressive Waves

Definition

A uniform traveling wave is defined by the following equation, uu.

{ut+cux+au=0,t>0u(t,x)=f(x),t=0 \begin{cases} u_{t} + c u_{x} + a u = 0 & , t>0 \\ u(t,x) = f(x) & , t=0 \end{cases}

Here, tt represents time, xx represents position, and u(t,x)u(t,x) represents the waveform at position xx when the time is tt. ff represents the initial condition, especially the waveform at t=0t=0. The constant cc represents the velocity of the wave propagation, and the sign of the constant aa affects the amplitude change.

Description

20180514\_081032.png

20180514\_081254.png

A uniform traveling wave is a wave that moves at a constant speed as time progresses. If the constant aa is positive, the amplitude decreases over time as shown.

  • If c=0c=0, the wave does not move; if c>0c>0, it moves in the direction of the xx axis; if c<0c<0, it moves in the opposite direction of the xx axis.
  • If a=0a=0, the amplitude does not change; if a>0a>0, the amplitude gradually decreases; if a<0a<0, the amplitude gradually increases.

If a,c=0a, c = 0, it becomes the standing wave partial differential equation. If there is a solution to the uniform traveling wave partial differential equation, the solution is as follows.

Applications in Mathematical Biology

nt+na=μ(a)n {{ \partial n } \over { \partial t }} + {{ \partial n } \over { \partial a }} = - \mu \left( a \right) n

The Von Foerster equation models the age structure of a population as a uniform traveling wave.

Solution

  • Step 1. Set up the characteristic curve x:=ct+ξx : = ct + \xi.

    This represents moving at a rate of cc starting from the initial position ξ\xi.

  • Step 2. Define a new function v(t,ξ):=u(t,x)v(t,\xi) := u(t,x).

    Then we have u(t,ct+ξ)=v(t,xct)u(t, ct + \xi) = v(t, x - ct), and by the chain rule for multivariable functions

    ut=vtdtdt+vξdξdt=vtcvξux=vtdtdx+vξdξdx=0+vξ \displaystyle {{ \partial u } \over { \partial t }} = {{ \partial v } \over { \partial t }} {{ d t } \over { d t }} + {{ \partial v } \over { \partial \xi }} {{ d \xi } \over { d t }} = v_{t} - c v_{ \xi } \\ \displaystyle {{ \partial u } \over { \partial x }} = {{ \partial v } \over { \partial t }} {{ d t } \over { d x }} + {{ \partial v } \over { \partial \xi }} {{ d \xi } \over { d x }} = 0 + v_{ \xi }

    Assuming a uniform traveling wave, we get vx=vtdtdx=0\displaystyle v_{x} = {{ \partial v } \over { \partial t }} {{ d t } \over { d x }} = 0.

  • Step 3. Substitute u(t,x)=v(t,ξ)u ( t, x ) = v( t, \xi ).

    ut+cux+au=(vtcvξ)+cvξ+av=vt+av=0 \begin{align*} u_{t} + c u_{x} + a u &= ( v_{t} - c v_{\xi} ) + c v_{\xi} + a v \\ =& v_{t} + a v \\ =& 0 \end{align*}

  • Step 4. Multiply both sides of the ordinary differential equation vt+av=0v_{t} + a v = 0 by eate^{a t }.

    vteat+aveat=0    t(veat)=0 \displaystyle v_{t} e^{at} + a v e^{at} = 0 \iff {{ \partial } \over { \partial t }} \left( v e^{at} \right) = 0

    On the other hand

    f(x)=u(0,x)=v(0,ξ)=v(0,ξ)ea0=f(ξ) \begin{align*} f(x) =& u(0,x) \\ =& v(0, \xi) \\ =& v(0, \xi) e^{ a \cdot 0 } \\ =& f (\xi ) \end{align*}

    Hence, f(ξ)=veatf( \xi ) = v e^{at} becomes the solution to the standing wave partial differential equation t(veat)=0\displaystyle {{ \partial } \over { \partial t }} \left( v e^{at} \right) = 0.

    • Step 5. Revert to v(t,ξ)=u(t,x) v( t, \xi ) = u ( t, x ).

      Since we have v(t,x)eat=f(ξ)v(t,x) e^{a t} = f(\xi), it leads to u(t,x)=f(xct)eatu(t,x) = f(x - ct) e^{-at}.

Examples

1

  • Solve for {ut4ux+u=0,t>0u(t,x)=x2,t=0\displaystyle \begin{cases} u_{t} -4 u_{x} + u = 0 & , t>0 \\ u(t,x) = x^2 & , t=0 \end{cases}.

By substituting c=4c=-4 and a=1a = 1 into the solution formula u(t,x)=f(xct)eatu(t,x) = f(x - ct) e^{-at}, we get

u(t,x)=(x+4t)2et u(t,x) = (x + 4t)^2 e^{-t}

Verifying,

ut4ux+u=[8(x+4t)(x+4t)2]et42(x+4t)et+(x+4t)2et=0 u_{t} -4 u_{x} + u = \left[ 8(x + 4t) - (x + 4t)^2 \right] e^{-t} - 4 \cdot 2 (x + 4t) e^{-t} + (x + 4t)^2 e^{-t} = 0

and

u(0,x)=(x+0)2e0=x2 u(0,x) = (x + 0 )^2 e^{-0} = x^2

2

  • Solve for {ut+2ux=1,t>0u(t,x)=ex2,t=0\displaystyle \begin{cases} u_{t} + 2 u_{x} = 1 & , t>0 \\ u(t,x) = e^{-x^2} & , t=0 \end{cases}.

First, let’s solve for {wt+2wx=0,t>0w(t,x)=ex2,t=0\displaystyle \begin{cases} w_{t} + 2 w_{x} = 0 & , t>0 \\ w(t,x) = e^{-x^2} & , t=0 \end{cases}. By substituting c=2c=2 and a=0a = 0 into the solution formula w(t,x)=f(xct)eatw(t,x) = f(x - ct) e^{-at}, we get

w(t,x)=e(x2t)2 w(t,x) = e^{-(x-2t)^2}

Now, let’s say for some function f,gf,g, we have u(t,x)=w(t,x)+f(t)+g(x)u(t,x) = w(t,x) + f(t) + g(x). For an arbitrary constant kRk \in \mathbb{R}, let f(t)=ktf(t) = kt and hence g(x)=1k2x\displaystyle g(x) = {{1-k} \over {2}} x,

ut+2ux=[wt+f(t)]+2[wx+g(x)]=(wt+2wx)+(k+21k2)=0+1 u_{t} + 2 u_{x} = [ w_{t} + f '(t) ] + 2 [ w_{x} + g ' (x) ] = ( w_{t} + 2 w_{x} ) + ( k + 2 {{1-k} \over {2}} ) = 0 + 1

Therefore,

u(t,x)=e(x2t)2+kt+1k2x u(t,x) = e^{-(x-2t)^2} + kt + {{1-k} \over {2}} x

becomes the solution to the given equation.