logo

Ernestrom-Kakeya Theorem Proof 📂Complex Anaylsis

Ernestrom-Kakeya Theorem Proof

Theorem 1

Let {ai}i=0nR\left\{ a_{i} \right\}_{i=0}^{n} \subset \mathbb{R} such that a0>a1>>an>0a_0 > a_1 > \cdots > a_n > 0. Then for the polynomial function P(z):=a0+a1z++an1zn1+anzn P(z) := a_0 + a_1 z + \cdots + a_{n-1} z^{n-1} + a_n z^n all roots zCz \in \mathbb{C} satisfy z1|z| \ge 1.

Proof

If there is a root of P(z)=0P(z) = 0 at z=1z=1, then we have 0=P(1)=i=0nai>0\displaystyle 0 = P(1) = \sum_{i=0}^{n} a_{i} > 0, so the root must be z1z \ne 1. Multiply both sides of the equation P(z)=0P(z) = 0 by zz and subtract from the original equation to express a0a_0 as a0=(1z)P(z)+(a0a1)z++(an1an)zn+anzn+1 a_0 = (1-z)P(z) + (a_0 - a_1) z + \cdots + (a_{n-1} - a_n) z^n + a_n z^{n+1} If we assume that a root z1z \ne 1 of P(z)=0P(z) = 0 satisfies z<1|z| < 1 given that a0>a1>>an>0a_0 > a_1 > \cdots > a_n > 0, then we have a0<(1z)P(z)+(a0a1)++(an1an)+an    a0<(1z)P(z)+a0+(a1+a1)++(an1+an1)+(an+an)    a0=a0<(1z)P(z)+a0    0<(1z)P(z) \begin{align*} & |a_0| < |(1-z)P(z)| + (a_0 - a_1) + \cdots + (a_{n-1} - a_n) + a_n \\ \implies& |a_0| < |(1-z)P(z)| + a_0 + (- a_1 + a_1) + \cdots + (- a_{n-1} + a_{n-1} )+ (- a_n + a_n ) \\ \implies& a_0 = |a_0| < |(1-z)P(z)| + a_0 \\ \implies& 0 < |(1-z)P(z)| \end{align*} Yet, since we assumed z1z \ne 1 is a root of P(z)=0P(z) = 0, we find a contradiction 0<(1z)P(z)=0 0 < |(1-z)P(z)| = 0 This indicates the wrongness of the assumption that z<1| z | < 1, hence we must have z1|z | \ge 1.


  1. Osborne. (1999). Complex variables and their applications: p. 6. ↩︎