logo

Central Limit Theorem Proof 📂Mathematical Statistics

Central Limit Theorem Proof

Theorem 1

If {Xk}k=1n\left\{ X_{k} \right\}_{k=1}^{n} are iid random variables following the probability distribution (μ,σ2)\left( \mu, \sigma^2 \right) , then when nn \to \infty nXnμσDN(0,1) \sqrt{n} {{ \overline{X}_n - \mu } \over {\sigma}} \overset{D}{\to} N (0,1)


Explanation

This theorem is widely acclaimed in statistics, along with the Law of Large Numbers. Despite being frequently discussed and applied, many encounter its proof only upon studying mathematical statistics. However, the proof itself is interesting, making the theorem even more valuable.

Proof

Strategy: Use tricks involving the moment generating function and Taylor’s theorem.


Firstly, assume that the moment generating function M(t)=E(etY),h<t<hM(t) = E(e^{t Y}), -h<t<h of Y:=nXnμσ\displaystyle Y := \sqrt{n} {{ \overline{X}_{n} - \mu } \over { \sigma }} exists. By defining a new function m(t):=E[et(Xμ)]=eμtM(t)m(t) := E[e^{t(X-\mu)}] = e^{-\mu t} M(t), M(t)=E(etnXnμσ)=E(eti=1nXinμσn)=E(etX1μσn)E(etX2μσn)E(etXnμσn)=E(etXμσn)E(etXμσn)E(etXμσn)={E(etXμσn)}n={m(tσn)}n,h<tσn<h \begin{align*} M(t) =& E \left( e^{ t \sqrt{n} {{ \overline{X}_n - \mu } \over {\sigma}} } \right) \\ =& E \left( e^{ t {{ \sum_{i=1}^{n} X_i - n \mu } \over {\sigma \sqrt{n} }} } \right) \\ =& E \left( e^{ t {{ X_1 - \mu } \over {\sigma \sqrt{n} }} } \right) E \left( e^{ t {{ X_2 - \mu } \over {\sigma \sqrt{n} }} } \right) \cdots E \left( e^{ t {{ X_n - \mu } \over {\sigma \sqrt{n} }} } \right) \\ =& E \left( e^{ t {{ X - \mu } \over {\sigma \sqrt{n} }} } \right) E \left( e^{ t {{ X - \mu } \over {\sigma \sqrt{n} }} } \right) \cdots E \left( e^{ t {{ X - \mu } \over {\sigma \sqrt{n} }} } \right) \\ =& { \left\{ E \left( e^{ t {{ X - \mu } \over {\sigma \sqrt{n} }} } \right) \right\} }^n \\ =& { \left\{ m \left( { {t} \over {\sigma \sqrt{n} } } \right) \right\} } ^{n} \qquad , -h < { {t} \over {\sigma \sqrt{n} } } < h \end{align*}

Taylor’s theorem: If the function f(x)f(x) is continuous at [a,b][a,b] and differentiable up to nn times at (a,b)(a,b), then for x0(a,b)x_{0} \in (a,b), there exists ξ(a,b)\xi \in (a,b) such that f(x)=k=0n1(xx0)kk!f(k)(x0)+(xx0)nn!f(n)(ξ)\displaystyle f(x) = \sum_{k=0}^{n-1} {{( x - x_{0} )^{k}\over{ k! }}{f^{(k)}( x_{0} )}} + {(x - x_{0} )^{n}\over{ n! }}{f^{(n)}(\xi)} is satisfied.

Applying Taylor’s theorem to n=2n=2 reveals that there exists ξ\xi satisfying either (t,0)(-t,0) or (0,t)(0,t). Hence, m(t)m(t) can be expressed as m(t)=m(0)+m(0)t+m(ξ)t22 m(t) = m(0) + m ' (0)t + { {m '' (\xi) t^2} \over {2} } Meanwhile, {m(0)=1m(0)=E(Xμ)=0m(0)=E[(Xμ)2]=σ2 \begin{cases} m(0)=1 \\ m ' (0) = E(X-\mu) = 0 \\ m '' (0) = E[(X-\mu)^2] = {\sigma}^2 \end{cases} thus m(t)=1+m(ξ)t22\displaystyle m(t) = 1 + { {m '' (\xi) t^2} \over {2} }. Here comes the trick: by adding and then subtracting σ2t22\displaystyle {{\sigma^2 t^2} \over {2}} on the right side, m(t)=1+σ2t22+[m(ξ)σ2]t22 m(t) = 1 + { { \sigma^2 t^2} \over {2} } + { { [ m '' (\xi) - \sigma^2 ] t^2} \over {2} } In other words, M(t)={m(tσn)}n={1+t22n+[m(ξ)σ2]t22nσ2}n M(t) = { \left\{ m \left( { {t} \over {\sigma \sqrt{n} } } \right) \right\} } ^{n} = { \left\{ 1 + { { t^2} \over {2n} } + { { [ m '' (\xi) - \sigma^2 ] t^2} \over {2n \sigma^2 } } \right\} } ^{n}

According to Taylor’s theorem, since ξ\xi lies between (tσn,0)\displaystyle \left( -{ {t} \over {\sigma \sqrt{n} } },0 \right) and (0,tσn)\displaystyle \left( 0,{ {t} \over {\sigma \sqrt{n} } } \right) , when nn \to \infty, ξ0\xi \to 0; thus, m(ξ)m(0)=σ2 m '' (\xi) \to m '' (0) = \sigma^2. By eliminating the terms that converge to

limnM(t)=limn(1+t22n)n=et2/2 \lim _{n \to \infty} M(t) = \lim _{n \to \infty} \left( 1 + { { t^2} \over {2n} } \right)^{n} = e^{t^2 / 2}

where et2/2e^{t^2 / 2} is the moment generating function of the standard normal distribution,

nXnμσDN(0,1) \sqrt{n} {{ \overline{X}_n - \mu } \over {\sigma}} \overset{D}{\to} N (0,1)


  1. Hogg et al. (2013). Introduction to Mathematical Statistcs(7th Edition): 313~315. ↩︎