Maximum Likelihood Estimator of the Laplace Distribution
📂Probability DistributionMaximum Likelihood Estimator of the Laplace Distribution
Theorem
Suppose we are given a random sample X:=(X1,⋯,Xn)∼Laplace(μ,b) that follows a Laplace distribution.
The maximum likelihood estimator (μ^,b^) for (μ,b) is as follows.
μ^=median(x1,⋯,xn)
b^=n1k=1∑n∣xk−μ∣
Proof
Laplace Distribution:
The Laplace distribution with parameters μ∈R and b>0 is a continuous probability distribution Laplace(μ,b) characterized by the following probability density function.
f(x)=2b1exp(−b∣x−μ∣)
Calculating the log likelihood gives us:
logL(μ,b;x)=logf(x;μ,b)=logk=1∏nf(xk;μ,b)=k=1∑nlogf(xk;μ,b)=k=1∑nlog(2b1exp(−b∣xk−μ∣))=−nlog2b−b1k=1∑n∣xk−μ∣
Therefore, solving for μargmaxlogL(μ,b;x), we have:
μargmax(−nlog2b−b1k=1∑n∣xk−μ∣)=μargmax(−k=1∑n∣xk−μ∣)=μargmin(k=1∑n∣xk−μ∣)
Since minimizing the absolute value is the median,
μ^=median(x1,⋯,xn)
Moreover, bargmaxlogL(μ,b;x) satisfies the following condition b.
∂b∂logL(μ,b;x)=0
⟹−nb1+b21k=1∑n∣xk−μ∣=0
⟹b=n1k=1∑n∣xk−μ∣
⟹b^=n1k=1∑n∣xk−μ∣
■