logo

Energy Levels in an Infinite Potential Well 📂Quantum Mechanics

Energy Levels in an Infinite Potential Well


🚧 이 포스트는 아직 이관 작업이 완료되지 않았습니다 🚧

To determine the wave functions (eigenfunctions) and energies (eigenvalues) in an infinite potential well, refer to here. Now, let’s bring in the results and examine their significance.

Eigenfunction ψ(x)=2asinnπax\displaystyle \psi_{(x)} =\sqrt{\frac{2}{a}}\sin \frac{n\pi}{a}x Eigenvalue En=n2π222ma2\displaystyle E_{n}=\frac{n^2\pi^2\hbar^2}{2ma^2}

For the wave function in an infinite potential well, the expectation value of momentum is 00, but the expectation value of the square of momentum is not 00. 1.1. Expectation value of momentum \begin{align*} \langle p \rangle &= \int_{0}^a {\psi_{n}(x)}^{\ast} p {\psi_{n}(x)} dx \\ &= \int_{0}^a \psi_{n}(x) \left( \frac{\hbar}{i}\frac{\partial}{\partial x} \right) {\psi_{n}(x)} dx \\ &= \frac{\hbar}{i} \int_{0}^a \psi_{n}(x) \frac{\partial}{\partial x}{\psi_{n}(x)} dx \end{align*}. In this case, since ψ2x=2ψψx\displaystyle \frac{\partial \psi ^2}{\partial x}=2\psi\frac{\partial \psi}{\partial x}, it is ψψx=12ψ2x\displaystyle \psi \frac{\partial \psi}{\partial x}=\frac{1}{2}\frac{\partial \psi^2}{\partial x}. i0aψn(x)xψn(x)dx=i0a12xψn(x)2dx=i12[2asin2nπxa]0a=i122a(sin2nπsin20)=0 \displaystyle{ \therefore \frac{\hbar}{i} \int_{0}^a \psi_{n}(x) \frac{\partial}{\partial x}{\psi_{n}(x)} dx \\ = \frac{\hbar}{i} \int_{0}^a \frac{1}{2} \frac{\partial}{\partial x}{\psi_{n}(x)}^2 dx \\ = \frac{\hbar}{i}\frac{1}{2} \left[ \frac{2}{a} \sin^2 \frac{n\pi x}{a} \right]_{0}^a \\ = \frac{\hbar}{i}\frac{1}{2} \frac{2}{a} (\sin ^2 n\pi – \sin^2 0) \\ = 0 } The expectation value of momentum over the entire range is 00. Does this mean the particle does not exist? No, it does not mean that. Just because the expectation value is 00 does not mean the momentum is 00. Let’s verify below that the expectation value of the square of the momentum is not 00. 2.2. Expectation value of the square of momentum p2=0aψn(x)(22x2)ψn(x)dx \displaystyle \langle p^2 \rangle = \int_{0}^a \psi_{n}(x) \left( -\hbar^2 \frac{\partial ^2}{\partial x^2} \right) \psi_{n}(x) dx . In this case, since the Schrödinger equation is 22m2x2ψ=Enψ\displaystyle \frac{-\hbar^2}{2m}\frac{\partial^2 }{\partial x^2}\psi = E_{n}\psi, it is 22x2ψ=2mEnψ\displaystyle -\hbar^2 \frac{\partial^2 }{\partial x^2}\psi = 2m E_{n}\psi. Therefore, \begin{align*} \int_{0}^a \psi_{n}(x) \left( -\hbar^2 \frac{\partial ^2}{\partial x^2} \right) \psi_{n}(x) dx &= \int_{0}^a \psi_{n}(x) 2m E_{n} \psi_{n}(x)dx \\ &= 2mE_{n}\int_{0}^a {\psi_{n}(x)}^2 dx \\ &= 2mE_{n} \\ &= 2m\frac{n^2 \hbar ^2 \pi^2}{2ma^2} \\ &= \left( \frac{2\hbar\pi}{a} \right)^2 \end{align*} . Now, using the result of 22, we can find the expectation value of kinetic energy. 3.3. Expectation value of kinetic energy \begin{align*} \langle K \rangle &= \langle \frac{1}{2m} p^2 \rangle \\ &= \frac{1}{2m} \langle p^2 \rangle \\ &= \frac{1}{2m} (2mE_{n}) \\ &= E_{n}=\frac{n^2 \hbar^2 \pi^2}{2ma^2} \end{align*} . At this point, let’s inspect the wavelength of the wave function. Since the wave function is sinnπxa\displaystyle \sin \frac{n\pi x}{a}, the wavelength is 2π(anπ)=2an\displaystyle 2\pi (\frac{a}{n\pi})=\frac{2a}{n}. The same result can be obtained using De Broglie’s matter-wave formula. λ=hp=2πk=2πk=2πanπ=2an\displaystyle \lambda = \frac{h}{p}=\frac{2\pi \hbar}{\hbar k}=\frac{2\pi}{k}=2\pi \frac{a}{n\pi}=\frac{2a}{n} For each nn, the energy and wavelength can be written as follows: E1=π222ma2\displaystyle E_{1}=\frac{\pi^2 \hbar^2}{2ma^2}, λ1=2a\lambda_{1} = 2a E2=4π222ma2=4E1 E_2 = \frac{4\pi^2 \hbar^2}{2ma^2}=4E_{1}, λ2=a\lambda_2=a E3=9π222ma2=9E1 E_{3} = \frac{9\pi^2 \hbar^2}{2ma^2}=9E_{1}, λ2=2a3\lambda_2=\frac{2a}{3}. The results are visually represented below. 2.jpg What has physical significance here is not ψ\psi but ψ2|\psi|^2, so the phase is not important. This means that in the two figures below, although the blue waves are out of phase with each other, it does not matter which one. 3.jpg The wave function is symmetric about a2\frac{a}{2}, and energy is proportional to n2n^2. The more the wave function oscillates, the higher the energy level (the greater the energy), or the greater the energy, the more the wave function oscillates.