logo

Impossibility of Cloning Theorem

Impossibility of Cloning Theorem

양자정보이론
[ 펼치기 · 접기 ]

Theorem1

It is not possible to have a quantum gate that clones the following qubit.

(C2)2(C2)2x0xx,xC2 \begin{equation} \begin{aligned} (\mathbb{C}^{2})^{\otimes 2} &\to (\mathbb{C}^{2})^{\otimes 2} \\ \ket{x} \otimes \ket{0} &\mapsto \ket{x} \otimes \ket{x},\quad \forall \ket{x} \in \mathbb{C}^{2} \end{aligned} \end{equation}

Here, (C2)2(\mathbb{C}^{2})^{\otimes 2} is the tensor product of vector spaces, and ab\ket{a} \otimes \ket{b} is a product vector.

Explanation

One of the fundamental reasons why computation using quantum computers is fundamentally different from classical computers is because it’s not possible to clone quantum information.

There’s an important note about what the theorem says. It does not say that a specific qubit can not be cloned. Rather, it states that there does not exist a gate that clones any arbitrary qubit xC2\ket{x} \in \mathbb{C}^{2}. A quantum gate that clones a specific qubit does exist. For instance, under the result of the theorem, if α\alpha or β\beta is 00, cloning might be possible. An example would be the quantum CNOT\operatorname{CNOT} gate. In other words, in quantum computing, it is only possible to clone exactly two qubits 0\ket{0} and 1\ket{1}, and cloning a general superposed state is impossible.

CNOTq(00)=00CNOTq(10)=11 \operatorname{CNOT}_{q} (\ket{00}) = \ket{00} \\[0.5em] \operatorname{CNOT}_{q} (\ket{10}) = \ket{11}

Proof

Strategy: Prove by contradiction.

Notation: ab=ab\ket{ab} = \ket{a} \otimes \ket{b}

Assume that for any given x=α0+β1C2\ket{x} = \alpha\ket{0} + \beta\ket{1} \in \mathbb{C}^{2} (0α,βC,α2+β2=1)(0 \ne \alpha, \beta \in \mathbb{C}, \left| \alpha \right|^{2} + \left| \beta \right|^{2} = 1), there exists a quantum gate GG that satisfies (1)(1). Since unitary operators are linear, the following holds:

G(x0)=G((α0+β1)0)=G(α00+β10)=αG(00)+βG(10)=α00+β11 \begin{align*} G\left( \ket{x} \otimes \ket{0} \right) &= G\left( (\alpha\ket{0} + \beta\ket{1}) \otimes \ket{0} \right) \\ &= G\left( \alpha\ket{0} \otimes \ket{0} + \beta\ket{1} \otimes \ket{0} \right) \\ &= \alpha G( \ket{00} ) + \beta G( \ket{10} ) \\ &= \alpha \ket{00} + \beta \ket{11} \end{align*}

Furthermore, since GG satisfies (1)(1), the following holds:

G(x0)=G((α0+β1)0)=(α0+β1)(α0+β1)=α200+αβ10+αβ01+β211 \begin{align*} G\left( \ket{x} \otimes \ket{0} \right) &= G\left( (\alpha\ket{0} + \beta\ket{1}) \otimes \ket{0} \right) \\ &= \left( \alpha\ket{0} + \beta\ket{1} \right) \otimes \left( \alpha\ket{0} + \beta\ket{1} \right) \\ &= \alpha^{2}\ket{00} + \alpha\beta\ket{10} + \alpha\beta\ket{01} + \beta^{2}\ket{11} \\ \end{align*}

From these equations, we obtain the following:

α00+β11=α200+αβ10+αβ01+β211    α2=α,β2=β,αβ=0 \alpha \ket{00} + \beta \ket{11} = \alpha^{2}\ket{00} + \alpha\beta\ket{10} + \alpha\beta\ket{01} + \beta^{2}\ket{11} \\[1em] \implies \alpha^{2} = \alpha,\quad \beta^{2} = \beta,\quad \alpha\beta = 0

This contradicts the assumption α,β0\alpha, \beta \ne 0, therefore, we can conclude that a quantum gate GG that clones any arbitrary qubit does not exist.


  1. 김영훈·허재성, 양자 정보 이론 (2020), p99 ↩︎