logo

Exchange Gate

Exchange Gate

양자정보이론
[ 펼치기 · 접기 ]

Definition1

22Qubit a,b=ab\ket{a, b} = \ket{a} \otimes \ket{b} The exchange gate ex\text{ex} is defined as follows.

ex:(C2)2(C2)2a,bb,a,a,b{0,1} \begin{align*} \text{ex} : (\mathbb{C}^{2})^{\otimes 2} &\to (\mathbb{C}^{2})^{\otimes 2} \\ \ket{a, b} &\mapsto \ket{b, a},\quad \forall a,b \in \left\{ 0, 1 \right\} \end{align*}

ex(ab)=ba \text{ex} (\ket{a} \otimes \ket{b}) = \ket{b} \otimes \ket{a}

Explanation

The exchange gate swaps the states of two qubits. The specific input and output are as follows.

ex(00)=00ex(01)=10ex(10)=01ex(11)=11 \text{ex} (\ket{00}) = \ket{00} \\[0.5em] \text{ex} (\ket{01}) = \ket{10} \\[0.5em] \text{ex} (\ket{10}) = \ket{01} \\[0.5em] \text{ex} (\ket{11}) = \ket{11}

Matrix representation is as follows.

ex=[1000001001000001] \text{ex} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}


  1. Kim Young-hoon & Heo Jae-seong, Quantum Information Theory (2020), p97 ↩︎