logo

Quantum CNOT Gate

Quantum CNOT Gate

양자정보이론
[ 펼치기 · 접기 ]

Definition1

(From the definition of a classical CNOT\operatorname{CNOT} gate) A quantum CNOT\operatorname{CNOT} gate for 22qubits a,b=ab\ket{a, b} = \ket{a} \otimes \ket{b} is defined as follows.

CNOTq:(C2)2(C2)2a,ba,ab,a,b{0,1} \begin{align*} \operatorname{CNOT}_{q} : (\mathbb{C}^{2})^{\otimes 2} &\to (\mathbb{C}^{2})^{\otimes 2} \\ \ket{a, b} &\mapsto \ket{a, a \oplus b},\quad \forall a,b \in \left\{ 0, 1 \right\} \end{align*}

CNOTq(ab)=aab \operatorname{CNOT}_{q} (\ket{a} \otimes \ket{b}) = \ket{a} \otimes \ket{a \oplus b}

Here, (C2)2(\mathbb{C}^{2})^{\otimes 2} is the tensor product of vector spaces, ab\ket{a} \otimes \ket{b} is the product vector, and \oplus is the exclusive or.

Description

In quantum circuits, the logical negation is a Pauli XX gate, hence it is also called the Controlled Pauli X gate.

The specific input and output of CNOTq\operatorname{CNOT}_{q} are as follows.

CNOTq(00)=0,00=00CNOTq(01)=0,01=01CNOTq(10)=1,10=11CNOTq(11)=1,11=10 \operatorname{CNOT}_{q} (\ket{00}) = \ket{0, 0 \oplus 0} = \ket{00} \\[0.5em] \operatorname{CNOT}_{q} (\ket{01}) = \ket{0, 0 \oplus 1} = \ket{01} \\[0.5em] \operatorname{CNOT}_{q} (\ket{10}) = \ket{1, 1 \oplus 0} = \ket{11} \\[0.5em] \operatorname{CNOT}_{q} (\ket{11}) = \ket{1, 1 \oplus 1} = \ket{10}

The matrix representation is as follows.

CNOTq=[1000010000010010] \operatorname{CNOT}_{q} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}


  1. 김영훈·허재성, 양자 정보 이론 (2020), p97 ↩︎