logo

Definite Integration through Trigonometric Substitution on the Complex Plane 📂Complex Anaylsis

Definite Integration through Trigonometric Substitution on the Complex Plane

Theorem

02πf(cosθ,sinθ)dθ=Cf(z)dz=2πiResf(z) \int_{0}^{2 \pi} f( \cos \theta , \sin \theta ) d \theta = \int_{\mathscr{C}} f(z) dz = 2 \pi i \sum \text{Res} f(z)

Description

Integrating real functions that are difficult to integrate can often be more straightforward through complex analysis. Among these, let’s look into integration techniques for integrands made up of trigonometric functions. The basic strategy involves changing the integration range to z(θ)=eiθ,0<θ<2πz(\theta) = e^{ i \theta} , 0 < \theta < 2 \pi and taking the necessary parts from there. If needed, a slight manipulation to turn it into the form of π<θ<π-\pi < \theta < \pi is also perfectly fine.

Viewing ff as a function of cosθ\cos \theta and sinθ\sin \theta allows for the substitution of the trigonometric functions with sinz=12i(z1z)\displaystyle \sin z = {{1} \over {2i}} \left( z - {{1} \over {z}} \right) and cosz=12(z+1z)\displaystyle \cos z = {{1} \over {2}} \left( z + {{1} \over {z}} \right) , respectively. This is essentially using Euler’s formula z=eiθ=cosθ+isinθz = e ^ { i \theta } = \cos \theta + i \sin \theta in reverse to transform the integrand from a trigonometric function to a polynomial one. Once the integrand takes the form of a rational function, it becomes easy to find residues, so we can find the value using the residue theorem and then take the real or imaginary part as needed.

Example 1

As an example, let’s consider when I:=0πcos2θ12acosθ+a2dθ,a<1I := \displaystyle \int_{0}^{\pi} {{\cos 2 \theta} \over {1 - 2 a \cos \theta + a^2 }} d \theta , |a| <1, and find the value of II.

Solution

Since cos2θ12acosθ+a2\displaystyle {{\cos 2 \theta} \over {1 - 2 a \cos \theta + a^2 }} is an even function, 0πcos2θ12acosθ+a2dθ=12ππcos2θ12acosθ+a2dθ \int_{0}^{\pi} {{\cos 2 \theta} \over {1 - 2 a \cos \theta + a^2 }} d \theta = {{1} \over {2}} \displaystyle \int_{-\pi}^{\pi} {{\cos 2 \theta} \over {1 - 2 a \cos \theta + a^2 }} d \theta substituting gives us dz=ieiθdθ    dθ=1izdz\displaystyle dz = i e ^{i \theta} d \theta \iff d \theta = {{1} \over {i z}} dz , so I=12Ccos2θ12a12(z+1z)+a21izdz=12iCcos2θza(z2+1)+a2zdz \begin{align*} I =& {{1} \over {2}} \displaystyle \int_{ \mathscr{C} } {{ \cos 2 \theta } \over {1 - 2 a {{1} \over {2}} \left( z + {{1} \over {z}} \right) + a^2 }} {{1} \over {i z}} dz \\ =& {{1} \over {2i}} \int_{ \mathscr{C} } {{ \cos 2 \theta } \over {z - a \left( z^2 + 1 \right) + a^2 z }} dz \end{align*} therefore, II becomes the real part of the complex integral 12Ciz2za(z2+1)+a2zdz\displaystyle {{1} \over {2}} \int_{ \mathscr{C} } {{ -i z^2 } \over {z - a \left( z^2 + 1 \right) + a^2 z }} dz . Factoring the denominator simplifies calculations, I=Re12aCiz2(z1a)(za)dz I = \operatorname{Re} {{1} \over {2a}} \int_{ \mathscr{C} } {{ i z^2 } \over { ( z - {{1} \over {a}} ) (z - a) }} dz by the Residue theorem, 12aCiz2(z1a)(za)dz=2πi2aResiz2(z1a)(za) {{1} \over {2a}} \int_{ \mathscr{C} } {{ i z^2 } \over { ( z - {{1} \over {a}} ) (z - a) }} dz = {{2 \pi i} \over {2a}} \sum \text{Res} {{ i z^2 } \over { ( z - {{1} \over {a}} ) (z - a) }} a<1|a| < 1, thus aa is a singularity inside the unit circle C\mathscr{C}, while 1a\displaystyle {{1} \over {a}} lies outside C\mathscr{C} and does not need to be considered. Calculating the residue at the simple pole aa gives us Resiz2(z1a)(za)=ia2a1a=ia3a21 \text{Res} {{ i z^2 } \over { ( z - {{1} \over {a}} ) (z - a) }} = {{ i a^2 } \over { a - {{1} \over {a}} }} = {{ i a^3 } \over { a^2 - 1 }} therefore 12aCiz2(z1a)(za)dz=πiaia3a21=πa21a2 {{1} \over {2a}} \int_{ \mathscr{C} } {{ i z^2 } \over { ( z - {{1} \over {a}} ) (z - a) }} dz = {{ \pi i} \over {a}} {{ i a^3 } \over { a^2 - 1 } } = {{ \pi a^2 } \over { 1 - a^2 } } Since II was the real part of πa21a2\displaystyle {{ \pi a^2 } \over { 1 - a^2 } }, we get I=πa21a2\displaystyle I = {{ \pi a^2 } \over { 1 - a^2 } }.

Commentary

This solution might seem overly complex and difficult at first glance. However, attempting the calculations without using complex analysis will reveal how much easier and more convenient this method actually is.

Furthermore, upon examining the unique shape of the example’s denominator, if we consider two vectors p\mathbf{p} and q\mathbf{q}, then pq|\mathbf{p}-\mathbf{q}| would be the length of the difference between the two vectors.

pq2=(pq)(pq)=p22pqcosθ+q2=p2(12qpcosθ+q2p2) \begin{align*} | \mathbf{p} - \mathbf{q} | ^2 =& (\mathbf{p} - \mathbf{q}) \cdot (\mathbf{p} - \mathbf{q}) \\ =& |\mathbf{p}|^2 - 2 |\mathbf{p}| |\mathbf{q}| \cos \theta + |\mathbf{q}|^2 \\ =& |\mathbf{p}|^2 \left( 1 - 2 {{|\mathbf{q}|} \over {|\mathbf{p}| }} \cos \theta + {{|\mathbf{q}|^2} \over {|\mathbf{p}|^2 }} \right) \end{align*} Setting it as a:=qp\displaystyle a := {{|\mathbf{q}|} \over {|\mathbf{p}| }} gives us the shape we observed. Such a shape is frequently seen in physics, and questioning whether ‘integrals of this form are possible’ is undoubtedly important.


  1. Osborne (1999). Complex variables and their applications: p162. ↩︎