logo

Left Multiplication Transformation (Matrix Transformation) 📂Linear Algebra

Left Multiplication Transformation (Matrix Transformation)

Definition1

Regarding the field FF, let’s say AMm×n(F)A \in M_{m \times n}(F). The following LAL_{A} is defined as the left-multiplication transformation.

LA:FnFmxAx \begin{align*} L_{A} : F^{n} &\to F^{m} \\ x &\mapsto Ax \end{align*}

Here, AxAx is the matrix product of AA and xx.

Description

This is a more abstract description of matrix transformation using the concept of a field.

Theorems

Let’s say AMm×n(F)A \in M_{m \times n}(F). Then, LAL_{A} is a linear transformation. Also, when BMm×n(F)B \in M_{m \times n}(F) and β,γ\beta, \gamma are each the standard ordered basis of Fn,FmF^{n}, F^{m}, the following holds.

(a) [LA]βγ=A\begin{bmatrix} L_{A} \end{bmatrix}_{\beta}^{\gamma} = A

(b) LA=LB    A=BL_{A} = L_{B} \iff A = B

(c) If LA+B=LA+LBL_{A + B} = L_{A} + L_{B} and LaA=aLAaFL_{aA} = a L_{A} \forall a \in F, then

(d) If T:FnFmT : F^{n} \to F^{m} is a linear transformation, there exists a matrix m×nm \times n such that T=LCT = L_{C}. (In fact, it is C=[T]βγC = \begin{bmatrix} T \end{bmatrix}_{\beta}^{\gamma})

(e) If a matrix is referred to as EE, then LAE=LALEL_{AE} = L_{A} L_{E}.

(f) If m=nm=n, then LIn=IFnL_{I_{n}} = I_{F^{n}}. Here, the left side’s InI_{n} is the n×nn\times n identity matrix, and the right side’s IFnI_{F^{n}} is the IFn:FnFnI_{F^{n}} : F^{n} \to F^{n} identity transformation.


  1. Stephen H. Friedberg, Linear Algebra (4th Edition, 2002), p92-93 ↩︎