logo

Sectional Curvature of Differential Manifolds 📂Geometry

Sectional Curvature of Differential Manifolds

Theorem1

Let σTpM\sigma \subset T_{p}M be a 2-dimensional subspace of the tangent space TpMT_{p}M. Suppose that x,yσx, y \in \sigma are linearly independent. Then, the following KK does not depend on the choice of x,yx, y.

K(x,y)=R(x,y,x,y)x×y2 K(x, y) = \dfrac{R(x,y,x,y)}{\left\| x \times y \right\|^{2}}

Here, RR is the Riemann curvature tensor.

Explanation

According to the above theorem, if σ\sigma is given, the value of KK is the same for any basis of σ\sigma. Therefore, KK is defined as follows.

Definition

For a point pMp \in M on the differentiable manifold MM and a 2-dimensional subspace of the tangent space σTpM\sigma \subset T_{p}M,

K(σ)=K(x,y) K(\sigma) = K(x, y)

is called the sectional curvature of σ\sigma at pp, where {x,y}\left\{ x, y \right\} is any basis of σ\sigma.

Proof

Consider the following transformations that change the basis {x,y}\left\{ x, y \right\} of σ\sigma to another basis {x,y}\left\{ x^{\prime}, y^{\prime} \right\}.

{x,y}{y,x}{x,y}{λx,y}{x,y}{x+λy,y} \begin{align*} \left\{ x, y \right\} &\to \left\{ y, x \right\} \\ \left\{ x, y \right\} &\to \left\{ \lambda x, y \right\} \\ \left\{ x, y \right\} &\to \left\{ x + \lambda y, y \right\} \end{align*}

Then, KK remains invariant under these transformations. Due to the linearity and symmetry of RR,

K(y,x)=R(y,x,y,x)y×x2=R(x,y,x,y)x×y2=K(x,y) K(y, x) = \dfrac{R(y,x,y,x)}{\left\| y \times x \right\|^{2}} = \dfrac{R(x,y,x,y)}{\left\| x \times y \right\|^{2}} = K(x, y)

K(λx,y)=R(λx,y,λx,y)λx×y2=λ2R(x,y,x,y)λ2x×y2=R(x,y,x,y)x×y2=K(x,y) K(\lambda x, y) = \dfrac{R(\lambda x,y,\lambda x,y)}{\left\|\lambda x \times y \right\|^{2}} = \dfrac{\lambda^{2} R(x,y,x,y)}{\lambda^{2}\left\| x \times y \right\|^{2}} = \dfrac{R(x,y,x,y)}{\left\| x \times y \right\|^{2}} = K(x, y)

Since RR is symmetric, R(y,y,x,y)=R(x,y,y,y)=0R(y,y,x,y) = R(x,y,y,y) = 0 and because of y×y=0y \times y = 0,

K(x+λy,y)=R(x+λy,y,x+λy,y)(x+λy)×y2=R(x,y,x,y)x×y2=K(x,y) \begin{align*} K(x + \lambda y, y) &= \dfrac{R(x + \lambda y,y,x + \lambda y,y)}{\left\| (x + \lambda y) \times y \right\|^{2}} \\[1em] &= \dfrac{R(x,y,x,y)}{\left\| x \times y \right\|^{2}} \\[1em] &= K(x, y) \end{align*}


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p93-94 ↩︎