logo

Symmetry of Connection 📂Geometry

Symmetry of Connection

Definition1

An affine connection \nabla on a differentiable manifold MM is said to be symmetric if it satisfies the following.

XYYX=[X,Y]X,YX(M) \nabla_{X}Y - \nabla_{Y} X = \left[ X, Y \right] \quad \forall X,Y \in \mathfrak{X}(M)

Here X(M)\mathfrak{X}(M) is the set of vector fields on MM, and [,][ \cdot, \cdot] is the Lie bracket.

Explanation

Let’s take Euclidean space as an example. Consider a coordinate system (U,x)(U, \mathbf{x}) of Rn\mathbb{R}^{n}. If we denote this as,

XiXjXjXi=[Xi,Xj]=XiXjXjXi=2xixj2xjxi=0    XiXj=XjXk \nabla_{X_{i}}X_{j} - \nabla_{X_{j}}X_{i} = [X_{i}, X_{j}] = X_{i}X_{j} - X_{j}X_{i} = \dfrac{\partial ^{2}}{\partial x_{i}x_{j}} - \dfrac{\partial ^{2}}{\partial x_{j}x_{i}} = 0 \\ \implies \nabla_{X_{i}}X_{j} = \nabla_{X_{j}}X_{k}

Furthermore, since XiXj=ΓijkXk\nabla_{X_{i}}X_{j} = \Gamma_{ij}^{k}X_{k},

XiXjXjXi=ΓijkXkΓjikXk=(ΓijkΓjik)Xk=0 \nabla_{X_{i}}X_{j} - \nabla_{X_{j}}X_{i} = \Gamma_{ij}^{k}X_{k} - \Gamma_{ji}^{k}X_{k} = (\Gamma_{ij}^{k} - \Gamma_{ji}^{k})X_{k} = 0

Therefore, Γijk=Γjik\Gamma_{ij}^{k} = \Gamma_{ji}^{k} holds.


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p54 ↩︎