logo

The Algebraic Multiplicity of Eigenvalues is Greater Than or Equal to Their Geometric Multiplicity 📂Matrix Algebra

The Algebraic Multiplicity of Eigenvalues is Greater Than or Equal to Their Geometric Multiplicity

Theorem

A matrix matrix ACm×mA \in \mathbb{C}^{ m \times m} having an eigenvalue λ\lambda with an algebraic multiplicity aa and a geometric multiplicity gg implies aga \ge g.

Explanation

The algebraic and geometric multiplicities of an eigenvalue are not guaranteed to be the same. If they were, they wouldn’t have been defined differently in the first place. However, one certain thing is that regardless of how small the algebraic multiplicity may be, it is always greater than or equal to the geometric multiplicity.

Proof

Notation: For convenience, let’s refer to the row space of the given matrix’s basis as the matrix’s basis. When we say mNm \in \mathbb{N}, it means an identity matrix that has a size of m×mm \times m. If the indices are omitted, it should be understood in the context of the operations involving matrices of corresponding sizes.


Given the assumption, the following holds:

g=dimsp{x1,x2,,xg}=dimSλ=dim{xCm  Ax=λx} g = \dim \text{sp} \left\{ \mathbf{x}_{1} , \mathbf{x}_{2} , \cdots ,\mathbf{x}_{g} \right\} = \dim S_{\lambda} = \dim \left\{ \mathbf{x} \in \mathbb{C}^{ m } \ | \ A\mathbf{x} = \lambda \mathbf{x} \right\}

Meaning, with respect to 1ig1 \le i \le g, it is Axi=λxiA \mathbf{x}_{i} = \lambda \mathbf{x}_{i}. Now, if the basis of the matrix AA is {x1,x2,,xg,y1,y2,,ymg} \left\{ \mathbf{x}_{1} , \mathbf{x}_{2} , \cdots ,\mathbf{x}_{g} , \mathbf{y}_{1} , \mathbf{y}_{2} , \cdots , \mathbf{y}_{m-g} \right\} , then P=[x1x2xgy1y2ymg]P = \begin{bmatrix}\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{g} & \mathbf{y}_{1} & \mathbf{y}_{2} & \cdots & \mathbf{y}_{m-g} \end{bmatrix} is an invertible matrix.

AP=A[x1ymg]=[Ax1Ax2AxgAy1Ay2Aymg]=[λx1λx2λxgAy1Ay2Aymg]=[x1ymg][λIgBOC] \begin{align*} AP =& A \begin{bmatrix} \mathbf{x}_{1} \cdots \mathbf{y}_{m-g} \end{bmatrix} \\ =& \begin{bmatrix} A \mathbf{x}_{1} & A \mathbf{x}_{2} & \cdots & A \mathbf{x}_{g} & A \mathbf{y}_{1} & A \mathbf{y}_{2} & \cdots & A \mathbf{y}_{m-g} \end{bmatrix} \\ =& \begin{bmatrix} \lambda \mathbf{x}_{1} & \lambda \mathbf{x}_{2} & \cdots & \lambda \mathbf{x}_{g} & A \mathbf{y}_{1} & A \mathbf{y}_{2} & \cdots & A \mathbf{y}_{m-g} \end{bmatrix} \\ =& \begin{bmatrix} \mathbf{x}_{1} \cdots \mathbf{y}_{m-g} \end{bmatrix} \begin{bmatrix} \lambda I_{g} & B \\ O & C \end{bmatrix} \end{align*}

Here, BCg×(mg),CC(mg)×(mg)B \in \mathbb{C}^{ g \times (m-g) }, C \in \mathbb{C}^{ (m-g) \times (m-g) } and OO is a (mg)×g(m-g) \times g zero matrix. If we set D=[λIgBOC]D = \begin{bmatrix} \lambda I_{g} & B \\ O & C \end{bmatrix}, then AP=PDAP = PD, and PP is an invertible matrix, therefore A=PDP1 A = PDP^{-1} Also, since matrix AA and DD are similar, det(AμI)=det(DμI)=det[(λμ)IgBOCμImg]=(λμ)gdet(CμImg) \begin{align*} \det (A - \mu I) =& \det (D - \mu I) \\ =& \det \begin{bmatrix} (\lambda - \mu) I_{g} & B \\ O & C - \mu I_{m-g} \end{bmatrix} \\ =& (\lambda - \mu)^{g} \det ( C - \mu I_{m-g} ) \end{align*}

Among the roots fulfilling characteristic equation det(AμI)=0\det (A - \mu I) = 0, μ=λ\mu = \lambda has at least the geometric multiplicity of gg. Hence, the algebraic multiplicity of λ\lambda, aa, is greater than or equal to gg.